КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Критерии оптимальности и целевые функции
В САПР процедуры параметрического синтеза выполняются либо человеком в процессе многовариантного анализа (в интерактивном режиме), либо реализуются на базе формальных методов оптимизации (в автоматическом режиме). В последнем случае находят применение несколько постановок задач оптимизации. Наиболее распространенной является детерминированная постановка: заданы условия работоспособности на выходные параметры Y и нужно найти номинальные значения проектных параметров X, к которым относятся параметры всех или части элементов проектируемого объекта. Назовем эту задачу оптимизации базовой. В частном случае, когда требования к выходным параметрам заданы нечетко, к числу рассчитываемых величин могут быть отнесены также нормы выходных параметров, фигурирующие в их условиях работоспособности. Если проектируются изделия для дальнейшего серийного производства, то важное значение приобретает такой показатель, как процент выпуска годных изделий в процессе производства. Очевидно, что успешное выполнение условий работоспособности в номинальном режиме не гарантирует их выполнения при учете производственных погрешностей, задаваемых допусками параметров элементов. Поэтому целью оптимизации становится максимизация процента выхода годных, а к результатам решения задачи оптимизации относятся не только номинальные значения проектных параметров, но и их допуски. Базовая задача оптимизации ставится как задача математического программирования extr F(X), (1.1) XÎD, Dх={Х|j(Х)>0,ψ(Х)=0}, где F(X) — целевая функция, X — вектор управляемых (проектных) параметров, j(Х) и ψ(Х) —функции-ограничения; Dx —допустимая область в пространстве управляемых параметров. Запись (1.1) интерпретируется как задача поиска экстремума целевой функции путем варьирования управляемых параметров в пределах допустимой области. Таким образом, для выполнения расчета номинальных значений пара-' метров необходимо, во-первых, сформулировать задачу в виде (1.1), во-; вторых, решить задачу поиска экстремума F(X). Сложность постановки оптимизационных проектных задач обусловлена наличием у проектируемых объектов нескольких выходных параметров, которые могут быть критериями оптимальности, но в задаче (1.1) целевая функция должна быть одна. Другими словами, проектные задачи являются многокритериальными, и возникает проблема сведения многокритериальной задачи к однокритериальной. Применяют несколько способов выбора критерия оптимальности. В частном критерии среди выходных параметров один выбирают в качестве целевой функции, а условия работоспособности остальных выходных параметров относят к ограничениям задачи (1.1). Эта постановка вполне приемлема, если действительно можно выделить один наиболее критичный выходной параметр. Но в большинстве случаев сказывается недостаток частного критерия (рис. 1.1). На этом рисунке представлено двумерное пространство выходных параметров у1 и у2, для которых заданы условия работоспособности у 1 < Т1 и у2 < Т2. Кривая АВ является границей достижимых значений выходных параметров. Это ограничение объективное и связано с существующими физическими и технологическими условиями производства, называемыми условиями реализуемости. Область, в пределах которой выполняются все условия реализуемости и работоспособности, называют областью работоспособности. Множество точек пространства выходных параметров, из которых невозможно перемещение, приводящее к улучшению всех выходных параметров, называют областью компромиссов, или областью Парето. Участок кривой АВ (см. рис. 1.1) относится к области Парето.
Рисунок 1.1. Области Парето и работоспособности Если в качестве целевой функции в ситуации рис. 1.1. выбрать параметр у1, то результатом оптимизации будут параметры X, соответствующие точке В. Но это граница области работоспособности и, следовательно, при нестабильности внутренних и внешних параметров велика вероятность выхода за пределы области работоспособности. Конечно, результаты можно улучшить, если применять так называемый метод уступок, при котором в качестве ограничения принимают условие работоспособности со скорректированной нормой в виде у2<Т2+Δ, где Δ — уступка. Но возникает проблема выбора значений уступок, т. е. результаты оптимизации будут иметь субъективный характер. Очевидно, что ситуация не изменится, если целевой функцией будет выбран параметр у2, — оптимизация приведет в точку А. Аддитивный критерий объединяет (свертывает) все выходные параметры (частные критерии) в одну целевую функцию, представляющую собой взвешенную сумму частных критериев (1.2)
где w j — весовой коэффициент, т — число выходных параметров. Функция (1.2) подлежит минимизации, при этом если условие работоспособности имеет вид уj > Tj, то w j < 0. Недостатки аддитивного критерия — субъективный подход к. выбору весовых коэффициентов и неучет требований ТЗ. Действительно в (1.2) не входят нормы выходных параметров. Аналогичные недостатки присущи и мультипликативному критерию, целевая функция которого имеет вид (1.3)
Нетрудно видеть, что если прологарифмировать (1.3), то мультипликативный критерий превращается в аддитивный. Более предпочтительным является максиминный критерий, в качестве целевой функции которого принимают выходной параметр, наиболее неблагополучный с позиций выполнения условий работоспособности. Для оценки степени выполнения условия работоспособности j-ro выходного параметра вводят запас работоспособности этого параметра Sj, и этот за- пас можно рассматривать как нормированный j -й выходной параметр. Например (здесь и далее для лаконичности изложения предполагается, что все выходные параметры приведены к виду, при котором условия работоспособности становятся неравенствами в форме уj < Tj): или где уномj — номинальное значение, а δj — некоторая характеристика рассеяния j -го выходного параметра, например, трехсигмовый допуск. Тогда целевая функция в максиминном критерии есть Здесь запись [1: т ] означает множество целых чисел в диапазоне от 1 до т. Задачу (1.1) при максиминном критерии конкретизируют следующим образом: где допустимая область Dx определяется только прямыми ограничениями на управляемые параметры хj: ximin < xi < ximax
Дата добавления: 2014-01-07; Просмотров: 2611; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |