КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Задачи оптимизациис учетом допусков
Содержательную сторону оптимизации с учетом допусков поясняет рис. 1.2, на котором представлены области работоспособности и допусковая в двумерном пространстве управляемых параметров. Если собственно допуски заданы и не относятся к управляемым параметрам, то цель оптимизации — максимальным образом совместить эти области так, чтобы вероятность выхода за пределы области работоспособности была минимальной.
Рис. 1.2. Области допусковая и работоспособности Решение этой задачи исключительно трудоемко, так как на каждом шаге оптимизации нужно выполнять оценку упомянутой вероятности методами статистического анализа, а для сложных моделей объектов таким методом является метод статистических испытаний. Поэтому на практике подобные задачи решают, принимая те или иные допущения. Например, если допустить, что цель оптимизации достигается при совмещении центров областей работоспособности Э и допусковой Хном, то оптимизация сводится к задаче центрирования, т. е. к определению центра Э. Задачу центрирования обычно решают путем предварительного нормирования управляемых параметров Хj с последующим вписыванием гиперкуба с максимально возможными размерами в нормированную область работоспособности. Примечание. Нормирование проводят таким образом, что допусковая область приобретает форму гиперкуба, полученного в результате нормирования. Очевидно, что решение задачи центрирования позволяет не только оптимизировать номинальные значения проектных параметров, но и их допуски, если последние относятся к управляемым параметрам.
Дата добавления: 2014-01-07; Просмотров: 374; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |