Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы измерений деформаций и механических напряжений




Измерение деформаций и механических напряжений широко применяется при исследовании физических свойств материалов и прочностью испытаниях различных деталей, машин, строительных конструкций и сооружений, а также земной коры и горных пород. Измерение деформаций используют при технической диагностике, а также при измерении физических величин (силы, моментов, давления), которые преобразуются в деформацию упругого элемента. В большинстве методов измерений механических напряжений датчиком воспринимается абсолютное или относительное значение деформации, поскольку естественной входной величиной применяемых при этом преобразователей является перемещение. Непосредственно измерять механические напряжения можно термоупругим, магнитоупругим, ультразвуковым и фотоупругим методами.

Переход от измеренных деформаций к механическим напряжениям можно осуществить при известных функциональных зависимостях

между деформацией и напряжением. При однородном объемном напряженном состоянии изотропного материала в пределах упругих деформаций можно по измеренным значениям главных деформаций ε1, ε2, ε3, σ1, σ2, σ3, пользуясь уравнениями связи (3), (4) и (5):

 

ε1=[σ1-μ(σ2 + σ3)] / Е; (3)

ε2=[σ2-μ(σ3 + σ1)] / Е; (4)

ε3=[σ3-μ(σ1 + σ2)] / Е; (5)

 

Здесь μ – коэффициент Пуассона;

Е – модуль Юнга.

В случае плосконапряженного состояния (σ3=0) уравнения связи имеют вид:

 

σ1=Е(ε1+με2)/(1-μ2); (6)

σ2=Е(ε1+με1)/(1-μ2); (7)

 

При исследовании линейно напряженного состояния связь между напряжением σ и относительной деформацией ε l в пределах упругости определяется зависимостью (8):

 

σ = Eε l. (8)

 

За пределом упругости переход от деформаций к напряжениям вызывает трудности, если заранее не известна функциональная зависимость между напряжениями и деформациями. Напряжения во внутренних слоях исследуемого объекта можно определить по измеренным деформациям на его наружной поверхности, если известен закон распределения деформаций по толщине объекта. В прозрачных образцах или в моделях из прозрачных диэлектриков внутреннее напряжение можно определить поляризационно-оптическим методом, основанным на фотоупругом эффекте [2].

 

Деформации необходимо измерять в весьма широких пределах – от сотых долей микрометра до метров, относительные деформации – в диапазоне 0 – 100 % и более. Малые деформации имеют место в металлах и твердых пластмассах, большие деформации необходимо измерять при испытании образцов с большим удлинением (эластичные пластмассы, резина …).

При определении прочностных характеристик материалов напряжение меньше 5 – 10 М Па обычно не измеряется. Измерения при очень малых механических напряжениях и деформаций требуется производить при различных физических и биологических исследованиях, в частности при исследовании структуры кристаллов, биологических мембран и других микрообъектов.

Обычно при измерении деформации ее сначала преобразуют в перемещение концов чувствительного элемента тензометра, расстояние между которыми называется базой. При этом используются два способа крепления первичного преобразователя к объекту испытания.

В первом случае первичный преобразователь непосредственно укрепляется на испытуемом объекте. Такой способ измерения, широко применяемый при комплексных испытаниях сложных объектов с использованием тензорезисторов, отличается невысокой точностью (погрешность 2-10 %) вследствие большого разброса параметров тензорезисторов и невозможности градуировать прибор (канал) с данным тензорезистором, который при таких измерениях является элементом разового использования.

Во втором случае датчик тензометра, включающий в себя первичный преобразователь (тензорезистивный, индуктивный, электрооптический), прикрепляется к исследуемому объекту при помощи специальных устройств, выполняемых в виде опорных призм, ножевых щуповых, пружинных, магнитных и других типов захватов. Для измерений при высоких температурах (до 1100˚ С) применяются захваты с кварцевыми наконечниками. Такие тензометры обычно используют совместно с испытательными машинами для прочностных испытаний деталей, образцов материалов и отдельных элементов сложных конструкций. Перемещение захватов, вызванное деформацией испытуемого образца, измеряется при помощи различных методов и средств измерений, но наиболее широко применяются тензорезистивные, индуктивные и электрооптические тензометры. Тензометры, используемые совместно с испытательными машинами, обеспечивают измерения с относительно малыми погрешностями (0,2 – 1,5 %), поскольку их можно градуировать совместно с датчиком при помощи образцовых средств измерений длины.


Рисунок 1 – Тензорезистивный датчик

 

Рисунок 2 – Индуктивный тензометр


На рисунке 1 показано устройство тензорезистивного датчика тензометра, у которого упругий элемент 2 в форме скобы крепится к испытуемому образцу 1 при помощи ножевых зажимов 4. Тензорезисторы 3 наклеены на среднюю часть скобы, которая изгибается при деформации (удлинении) испытуемого образца. Путем изменения формы упругого элемента и типа захватов создаются тензометры различных назначений, например для измерений угла закручивания образца или размеров трещин. Достоинствами таких тензометров являются относительно малая основная погрешность (0,2—0,5 %) при погрешности линейности и гистерезиса 0,05 – 0,2 % и высокая собственная частота датчика (10 к Гц).

В индуктивных тензометрах (рисунок 2) перемещение ножевой опоры 2 при деформации испытуемого образца 1 передается сердечнику 3 индуктивного датчика 4, который при помощи струбцины 5 укрепляется на образце. Погрешности индуктивных тензометров лежат в пределах 0,5 – 1,5 %. Отсутствие упругого элемента позволяет создавать индуктивные тензометры для работы в широком диапазоне температур.

При испытании образцов материалов тензометры с тензорезисторами применяются в основном для измерения деформации до 50 % от базы при значениях базы 2.5 – 100 мм. Индуктивные тензометры выпускаются с базами 1—200 мм и используются для измерения как малых, так и больших деформаций – до 30 % и более от базы.

Электрооптические тензометры обычно применяются для измерения больших деформаций – до 100 %. Преимуществом таких тензометров является отсутствие механического контакта между испытуемым образцом и датчиком перемещений, что позволяет проводить испытания образцов в закрытых камерах, при различных температурах и разных средах. Использование лазерных интерферометров для измерения деформаций дает возможность существенно повысить точность результатов измерений при прочностных испытаниях.

Для измерения деформаций и механических напряжений при натурных испытаниях различных машин, конструкций транспортных средств и других изделий наиболее широко используется метод, основанный на применении дискретных металлических и полупроводниковых тензорезисторов. Особенностью испытаний сложных изделий является наличие большого числа точек тензометрирования, поэтому для этих целей используются многоканальные тензостанции и ИИС для прочностных испытаний.

Проволочные, фольговые, пленочные и металлические тензорезисторы применяются для измерений статических деформаций 0.005 – 1.5 – 2 %, полупроводниковые – до 0.1 – 0.2 %, свободные проволочные тензорезисторы, которые закреплены только по концам базы, а также эластичные электрохимические тензорезисторы могут использоваться для измерения деформаций соответственно до 5 – 10 % и 30 – 50 %.В динамическом режиме максимально допустимые значения деформаций для проволочных и полупроводниковых тензорезисторов должны быть на порядок меньше, так как при таком режиме уменьшается надежность тензорезисторов.

Основные технические характеристики металлических, полупроводниковых и интегральных тензорезисторов, а также основные измерительные цепи для тензорезисторов рассмотрены в работе [2].




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 2887; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.