КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Природа ферромагнетизма
Рассматривая магнитные свойства ферромагнетиков, мы не вскрыли физическую природу этого явления. Описательная теория ферромагнетизма была разработана французским физиком П.Вейсом. Последовательная количественная теория на основе квантовой механики развита советским физиком Я.И.Френкелем и немецким физиком В.Гейзенбергом. Согласно представлениям Вейсса, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью, независимо от наличия внешнего намагничивающего поля. Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбивается на число малых макроскопических областей - доменов, самопроизвольно намагниченных до насыщения. При отсутствии внешнего магнитного поля магнитные моменты отдельных доменов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю, и ферромагнетик не намагничен. Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, как это имеет место в случае парамагнетиков, а целых областей спонтанной намагниченности. Поэтому с ростом Н намагниченность J и магнитная индукция В уже в довольно слабых полях растут очень быстро. Этим объясняется также увеличение д ферромагнетиков до максимального значения в слабых полях. Эксперименты показали, что зависимость В от Н не является такой плавной, как показано на рис. 60, а имеет ступенчатый вид. Это свидетельствует о том, что внутри ферромагнетика домены поворачиваются по полю скачком. При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничивание, т. к, тепловое движение не в состоянии быстро дезориентировать магнитные моменты столь крупных образований, какими являются домены. Поэтому и наблюдается явление магнитного гистерезиса. Для того чтобы ферромагнетик размагнитить, необходимо приложить коэрцитивную силу; размагничиванию способствует также встряхивание и нагревание ферромагнетика. Точка Кюри оказывается той температурой, выше которой происходит разрушение доменной структуры. Существование доменов в ферромагнетиках доказано экспериментально. Прямым экспериментальным методом является метод порошковых фигур. На тщательно отполированную поверхность ферромагнетика наносится водяная суспензия мелкого ферромагнитного порошка (например, магнетика). Частицы оседают преимущественно в местах максимальной неоднородности магнитного поля, т.е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов, и подобную картину можно сфотографировать под микроскопом. Линейные размеры доменов оказались равными 10-4 и 10-2 см. Дальнейшее развитие теории ферромагнетизма Френкелем и Гейзенбергом, а также ряд экспериментальных фактов позволили выяснить природу элементарных носителей ферромагнетизма. В настоящее время установлено, что магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами электронов. Установлено также, что ферромагнитными свойствами могут обладать только кристаллические вещества, в атомах которых имеются недостроенные внутренние электронные оболочки с нескомпенсированными спинами. В подобных кристаллах могут возникать силы, которые вынуждают спиновые магнитные моменты электронов ориентироваться параллельно друг другу, что и приводит к возникновению областей спонтанного намагничивания. Эти силы, называемые обменными силами, имеют квантовую природу - они обусловлены волновыми свойствами электронов. Существуют вещества, в которых обменные силы вызывают антипараллельную ориентацию спиновых магнитных моментов электронов. Такие вещества называются антиферромагнетиками. Их существование теоретически было предсказано Л.Д.Ландау. Антиферромагнетиками являются некоторые соединения марганца (MnO, MnF2), железа (FeO, FeCl2) и многих других элементов. Для них также существует антиферромагнитная точка Кюри, при которой магнитное упорядочение спиновых магнитных моментов нарушается и антиферромагнетик превращается в ферромагнетик. В последнее время большое значение приобрели полупроводниковые ферромагнетики - ферриты, химические соединения типа MeOFe2O3, где Me - ион двухвалентного металла (Mn, Co, Ni, Cu, Fe). Они отличаются заметными ферромагнитными свойствами и большим удельным электрическим сопротивлением (в миллиарды раз больше, чем у металлов). Ферриты применяются для изготовления постоянных магнитов, ферритовых антенн, сердечников радиочастотных контуров, элементов оперативной памяти в вычислительной технике, для покрытия пленок в магнитофонах и видеомагнитофонах и т.д.
Дата добавления: 2014-01-07; Просмотров: 1272; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |