Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сварка чугунных деталей

Общие сведения о чугуне. В авто­мобильном производстве чугун имеет довольно широкое распространение. Он используется для изготовления базовых, корпусных и других дета­лей, например, блоков цилиндров, картеров, маховиков, тормозных ба­рабанов, шкивов, ступиц колес и пр. Наибольшее распространение при восстановлении чугунных деталей получила электродуговая сварка.

Чугун относится к трудносварива­емым материалам. Эти трудности обусловлены наличием большого ко­личества свободного углерода и структурой. В процессе восстановле­ния сваркой свободный углерод час­тично выгорает с образованием угле­кислого газа, который растворяется в расплавленном сплаве. Некоторая часть газа не успевает выделиться из сварного шва, что приводит к образо­ванию пористости. Кроме того, дета­ли из чугуна после эксплуатации со­держат в порах(своеобразных капил­лярах) остатки масел, которые при нагреве выгорают и также способст­вуют образованию пористости в ме­талле шва. Это снижает физико-механические характеристики сварного соединения.

Чугун обладает высокой жидкотекучестью и очень быстро переходит из жидкой фазы в твердую, минуя пла­стическое состояние. При быстром охлаждении сварочной ванны в шве или околошовной зоне может образо­вываться цементит (Ре3С), обладаю­щий высокой твердостью и практиче­ски нулевой пластичностью. Такое явление получило название отбела чугуна в процессе сварки. Отбел при­водит, как правило, к возникновению больших внутренних напряжений и трещинам в сварочном шве или око­лошовной зоне.

Поэтому для получения качествен­ного сварного соединения при восста­новлении чугунных деталей необхо­димо выполнение особых мер и при­емов, направленных в первую оче­редь на предварительный нагрев де­талей до начала сварки, охлаждение наплавленного металла с заданной скоростью, использование специаль­ных электродов с более низкой темпе­ратурой плавления, чем основной ма­териал, и пр.

Выбор способа и приемов сварки чугунной детали зависит от ее разме­ров, формы, структуры, характера и места расположения дефекта, нали­чия тех или других сварочных мате­риалов и других факторов. В ремонт­ном производстве в зависимости от состояния восстанавливаемой дета­ли используют, в основном, два спосо­ба сварки чугуна: холодный и горя­чий.

Холодная сварка чугуна. Эта свар­ка наиболее широко используется при восстановлении автомобильных деталей. При данном способе исполь­зуют специальные сварочные мате­риалы или определенные приемы, на­пример, способ отжигающих вали­ков, постановкой шпилек и пр.

Одной из основных задач при вос­становлении чугунных деталей хо­лодной сваркой является получение швов с минимально возможным коли­чеством малопластинных цементита и ледебурита. Электродные материа­лы для сварки (на плавки) без предва­рительного подогрева детали разра­батывались, в направлении получе­ния металла шва с достаточной сте­пенью пластичности, который не образовывал бы закалочных структур при больших скоростях охлаждения. Требуемая пластичность материала шва достигается подбором электрод­ного металла с большим значением предела текучести по сравнению с ос­новным материалом, а также благо­даря уменьшению количества угле­рода в наплавленном слое {с повыше­нием количества углерода повышает­ся вероятность образования ледебу­рита и мартенсита). Однако в процес­се сварки избежать разбавления при­садочного металла с основным не удается, поэтому в качестве элект­родных материалов используют ме­таллы и сплавы, не образующие кар­бидов с углеродом (медь, никель). Так, при сварке высоконикелевыми электродными материалами возни­кают благоприятные условия для диффузии никеля в зону неполного расплавления из-за большого гради­ента концентрации этого элемента и большого коэффициента диффузии в жидком расплаве по сравнению с другими элементами. Для предуп­реждения образования карбидов на границах сплавления, когда сварка ведется на режим ах с малой погонной энергией (без сквозного проплавления), применяют электродные мате­риалы с содержанием никеля более 90 %.

В ремонтном производстве для восстановления чугунных деталей наи­более широкое распространение по­лучила механизированная сварка самозащитной электродной проволо­кой на основе никеля ПАНЧ-11, раз­работанной в Институте электро­сварки им. Е. О. Патона. Данный вид сварки чугуна обеспечивает высокое качество и производительность, по­зволяет восстанавливать самые раз­нообразные по форме и размерам ав­томобильные чугунные детали.

Рассмотрим устранение основных выбраковочных дефектов чугунных корпусных деталей. После дефектации при обнаружении трещин или пробоев деталь поступает в слесарно-механическое отделение, где ее подготавливают к восстановлению сваркой (рис. 7,15) электродной про­волокой ПАНЧ-11. Поверхность с трещиной зачищают при помощи шлифовального круга электро- или пневмошлифовальной машиной до металлического блеска по обе сторо­ны трещины на8— 10мм. Концы трещин обваривают или сверлят сквоз­ные отверстия диаметром 3 — 4 мм, отступив 6 — 10 мм от видимого кон­ца трещин в направлении ее разви­тия. После зачистки поверхностей выполняют разделку трещин (рис. 7.16), причем, сквозные трещины в тонких стенках — с одной стороны (рис. 7.16, а), в толстых (более 12мм) — с двух сторон (рис. 7.16, в). Стенки средней толщины разделывают, как показано на рис. 7.16, 6. Несквозные трещины разделывают до сплошного металла. Операцию разделки тре­щин выполняют фрезерованием с ис­пользованием ручной сверлильной пневматической машины ИП-1011. При разделке прорезным шлифо­вальным камнем применяют пневмошлифовальную машину ИП-2009А. Сварка проволокой ПАНЧ-11 выполняется на постоянном токе прямой полярности без дополнитель­ной защиты газом или флюсом. При сварке чугуна проволокой ПАНЧ-11 рекомендуются следующие режимы: диаметр проволоки— 1,2 мм, свароч­ный ток — 80 — 180 А, напряжение дуги—14—18 В, скорость подачи проволоки — ПО — 120 м/ч, скорость сварки — 4 — 5 м/ч.

Небольшой диаметр проволоки ПАНЧ-11 дает возможность исполь­зовать разделку кромок до 5 мм, что позволяет уменьшить тепловложение в деталь и сужает зону структурных превращений в основном металле. При данном виде сварки металл шва имеет достаточно высокие механиче­ские характеристики: предел прочно­сти — до 500 МН/м2, предел текуче­сти — до 300 МН/н2, удлинение — до 25 %, твердость — НВ 160 — 180. На небольшом участке околошовной зо­ны наблюдается повышение твердо­сти до НВ 280 — 310. При испытании на растяжении образцы разрушают­ся, как правило, по чугуну.

Для сварки можно использовать один из серийных шланговых полуав­томатов типа А-547, А-825, "Варио-Стар" 240.

Техника сварки следующая. Тре­щины заваривают участками длиной 30 — 50 мм с проковкой и охлаждени­ем каждого участка до температуры 50 — 60 °С. Заплаты на пробоины в деталях приваривают вразброс уча­стками длиной 50 — 60 мм по контуру заплаты. Следующий участок на за­плате начинают варить после проков­ки и охлаждения предыдущего до температуры 50 — 60 °С.

Для холодной сварки чугуна на­шли применение медно-железные электроды ОЗЧ-2, которые изготав­ливают из медного стержня с фтори­сто-кальциевым покрытием с добав­кой в него 50 % железного порошка. Эти электроды применяют для завар­ки трещин в водяных рубашках бло­ков цилиндров двигателей, головках блоков. Сварку ведут короткой дугой

на постоянном токе обратной поляр­ности с перерывами на проковку (для снижения внутренних напряжений и повышения плотности шва) и охлаж­дение детали до температуры 50 — 60 °С. Силу сварочного тока для элек­тродов диаметром 3 — 5 мм выбира­ют в пределах 110 — 190 А.

Медь, как и никель, не образует со­единений с углеродом и практически не растворяется в железе. Поэтому наплавленный слой неоднороден, в медной основе расположены включе­ния высокоуглеродистой стали с вы­сокой твердостью. В околошовной зо­не наблюдаются участки отбела. Шов обладает высокой твердостью.

Рис. 7.16. Разделка сквозных трещин

Таким образом, наплавка электро­дами с медными стержнями не обес­печивает получения сварного соеди­нения свободного от отбела и зака­ленных переходных зон. Прочность сплава сварного шва составляет при­мерно 50 — 60 % прочности основного материала. Поэтому при заварке тре­щин электродами ОЗЧ-2, учитывая пониженную прочность чугуна в око­лошовной зоне, необходимо приме­нять усиление шва, захватывая часть детали, прилегающую к кромке.

Более высокое качество восстанов­ления достигается при холодной сварке чугуна электродами МНЧ-2, изготовленными из монельметалла (28 % меди, 2,5 % железа, 1,5 % марганца, остальное никель). Сварной шов при этом пластичен, имеет ма­лую твердость, не имеет пор и рако­вин, зона отбела практически отсут­ствует, зона закаленного чугуна име­ет невысокую твердость, которая мо­жет быть снижена небольшим отпу­ском. Однако твердость и прочность металла сварного шва невысока. Электродами МНЧ-2 устраняют практически все дефекты, которые встречаются в автомобильных дета­лях из чугуна: трещины, пробои, ско­лы, обломы и пр.

С целью экономии дорогостоящих электродов из монельметалла и полу­чения материала шва более высокого качества иногда применяют комби­нированную сварку в сочетании с электродами ОЗЧ-2. При таком вари­анте первый и последний слои на­плавляют.электродами МНЧ-2, а промежуточные варят электродами ОЗЧ-2.

При отсутствии специальных сва­рочных материалов, рассмотренных выше, допускается проводить холод­ную сварку чугуна стальными элект­родами с содержанием в них углеро­да не более 0,1 %, например, марок УОНИ-13/45 или ОММ-5. В данном случае применяют специальный спо­соб, получивший название сварки на­ложением отжигающих валиков (рис. 7.17). При таком способе первый валик, накладываемый на чугун, из-за перемешивания электродного мате­риала с основным представляет со­бой сталь с содержанием углерода 0,6 — 0,8 %. При охлаждении -шов с та­ким высоким содержанием углерода закаливается. Последующие свароч­ные валики накладывают на первые таким образом, что происходит отжиг нижележащих слоев. Это позволяет получить относительно невысокую твердость сварочного шва. Перед сваркой трещину разделывают так, чтобы ширина разделки в верхней ча­сти в 2 — 3 раза превышала толщину свариваемой детали. Первоначально выполняют обварку кромок, а затем заполняют разделку. После сварки наложением отжигающих валиков материал шва по химическому соста­ву представляет собой высокоуглеро­дистую сталь с неоднородной струк­турой. Данный способ отличается низкой производительностью, невы­соким качеством и требует повышен­ного расхода электродов.

Для восстановления размеров по­верхностей трения в ИЭС им. Е. О. Патона разработана самозащитная порошковая проволока марки ПП-АН160 диаметром 1,6мм. Проволока используется для наплавки изношен­ных шеек коленчатых валов, изготов­ленных из высокопрочного чугуна ВЧ-50-2. Наплавка производится с поперечными на всю ширину шейки колебаниями электрода. Наплавлен­ный слой представляет собой белый износостойкий чугун доэвтектического состава с твердостью ИКС 48—54. Применение самозащитной порош­ковой проволоки позволило исклю­чить флюс или защитный газ, что зна­чительно снизило трудоемкость и се­бестоимость процесса.

От применяющихся в ремонтном производстве способов дуговой на­плавки разработанную технологию отличает хорошо сформированный наплавленный слой высокой макрохимической однородности с низкой склонностью к образованию трещин. Это объясняется тем, что скорость распространения температурного поля в тело шейки выше скорости на­плавки, а это способствует явлению автоподогрева.

Существенные различия во взаим­ном расположении коренных и ша­тунных шеек вала определили целе­сообразность проведения наплавки на двух специализированных станках УД-289 и УД-290. Основные парамет­ры процесса (скорость подачи прово­локи, частота колебаний, скорость наплавки) находятся во взаимной функциональной зависимости и уста­навливаются один раз при настройке станка. В качестве источника пита­ния применяют сварочные выпрями­тели с жесткой внешней характери­стикой ВДУ-В04, ВДУ-505,- ВС-300 и др. Род тока постоянный, полярность обратная.

Описанная технология использует­ся для восстановления чугунных ко­ленчатых валов автомобилей ГАЗ-24, УАЗ-469. К недостаткам данного процесса следует отнести укорочение ко­ленчатого вала после наплавки на 2 —З мм.

Горячая сварка чугуна. Эта свар­ка заключается в том, что деталь предварительно нагревают до темпе­ратуры 650 — 680 °С в печи и в таком состоянии устраняют дефекты свар­кой и наплавкой. Используют элект­родуговую и газовую сварку. В каче­стве присадочного материала применяют чугунные прутки марки А, хи­мический состав которых характери­зуется повышенным содержанием уг­лерода и особенно кремния. Это необ­ходимо для компенсации их угара при сварке и обеспечения полной графитизации металла шва.

При сварке используют специаль­ный флюс ФСЧ-1, допускается при­менение технической буры и 50 % смеси углекислого калия к натрия. В процессе сварки нельзя - допускать снижение температуры восстанавли­ваемой детали ниже 500 °С. После окончания сварки деталь охлаждают в специальных термосах или вместе с печью со скоростью 50 — 100 °С в час для нормализации и снятия внутрен­них напряжений.

При горячей сварке наблюдается наилучшее качество восстановления детали — сварной шов прочный, плотный, однородный по химическо­му составу и структуре, отсутствуют хрупкие структуры отбеленного чугу­на. Однако высокая трудоемкость и стоимость восстановления, а также тяжелые условия труда сварщика ог­раничивают использование данного способа. По данной причине на авто­ремонтных заводах в настоящее вре­мя горячая сварка и наплавка дета­лей из чугуна практически не исполь­зуется.

Глава XVII Восстановление деталей перспективными способами сварки и наплавки

<== предыдущая лекция | следующая лекция ==>
Вибродуговая наплавка деталей | Электроконтакnная приварка металлического слоя
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 1113; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.051 сек.