Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Получаем

.

Это и есть дифференциальное уравнение Лапласа в полярных координатах для установившегося плоскорадиального течения несжимаемой жидкости по закону Дарси.

Дважды проинтегрировав дифференциальное уравнение, получаем

.

Постоянные интегрирования С1, С2 находим как обычно из граничных условий Р = Рc при r = rc; Р = Рк при r = Rk.

Подставляя граничные условия, получаем систему уравнений для нахождения С1, С2:

.

Подставляя найденные значения С1 и С2 в решение, получим зависимость давления от координаты r в плоскорадиальном потоке.

.

Находим градиент давления

и используем его для нахождения скорости фильтрации

и дебита

,

где: S = 2prh – поверхность фильтрации (боковая поверхность цилиндра радиуса r и высотой h) (рис. 11.3).

Формула - называется формулой Дюпюи.

 
 
Рис. 11.3.

 

 


где: R0 – начальное положение частицы в момент t = 0 и r – текущее положение в момент t.

Если в эту формулу подставить вместо R0 ®Rк, а вместо r ® rc, то получим время Т отбора всей жидкости, находящейся в пласте

.

Находим средневзвешенное по объему порового пространства пластовое давление

Прокомментируем некоторые результаты.

Дебит скважины пропорционален депрессии DР (разнице давлений в пласте и на забое работающей скважины) и одинаков через любую цилиндрическую поверхность, т.е. не зависит от r.

Отношение объемного дебита скважины к DР называется коэффициентом продуктивности

;

.Через этот коэффициент дебит скважины выражается уравнением

Q=KпрDP, которое называется индикаторной диаграммой. На ней коэффициент продуктивности определяется как тангенс угла наклона прямой к оси DP (tg j = Kпр). На практике индикаторную диаграмму строят по данным испытания скважины, путем получения притоков нефти при различных депрессиях.

       
   
 
 

 

 


 

Градиент давления и скорости фильтрации ведут себя одинаково и резко возрастают при приближении к скважине (рис. 11.5).

Логарифмическая кривая давления, вращение которой вокруг скважины образует поверхность, называется воронкой депрессии. Основная часть депрессии образуется в призабойной зоне, параметры которой сильно влияют на дебит скважины (рис. 11.6).

 

 
 

 


 

 

Рис. 11.6 Воронка дисперсии (а) и гидродинамическое поле (б)

 

Гидродинамическое поле плоскорадиального потока описывается семействами изобар и линий тока. Изобара представляет окружности, поскольку, Р ~ уравнение окружности. Линии тока – прямые, совпадающие с радиусами. Все выведенные формулы с заменой (Рк – Рс) на (Рс – Рк) справедливы для нагнетательных скважин.

3.5.3 Радиально-сферический фильтрационный поток

<== предыдущая лекция | следующая лекция ==>
Лекция № 11. Будем считать, что несжимаемая жидкость притекает к гидродинамической совершенной скважине радиусом rc | Лекция № 12
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 517; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.