КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Приклад. Розв’язати рівняння
Теорема 2. Якщо умова (4) не виконується і всі корені рівняння (1) різні, то рівняння (1) можна перетворити в рівняння виду (2). Якщо умова (4) виконується, то рівняння (1) можна перетворити в рівняння виду (3). Доведення. Для відшукання коефіцієнтів рівняння (2) маємо систему рівнянь
Із перших двох рівнянь (6) при
Підставивши А та В в останні два рівняння (6) і поділивши ці рівняння на
яку можна записати у вигляді
де Ця система рівнянь має розв’язок
Коефіцієнти a, b є коренями квадратного рівняння
Дискримінант D цього рівняння
лише ненульовим дільником Якщо корені рівняння різні, то Зауважимо, що з рівнянь
можна знайти значення
Рівняння Якщо виконується умова (4), то рівняння (1) можна записати у вигляді рівняння (3). Для відшукання коефіцієнтів рівняння (3) маємо систему рівнянь
розв’язну в разі виконання умови (4). Рівняння (1) можна записати у вигляді
Приклад 1. Розв’язати кубічне рівняння
Ø Згідно з формулами (7)—(9) знаходимо:
Рівняння виду (2) набирає вигляду
і має розв’язок
Рівняння має дійсний корінь
Приклад 2. Розв’язати рівняння
Ø Знаходимо значення
Рівняння виду (2) набирає вигляду
і має розв’язок
При 4.13. Метод Феррарі для розв’язування рівнянь Метод Феррарі зводить розв’язування рівняння четвертого степеня до розв’язування кубічного рівняння відносно введеного параметра. Визначивши параметр, знаходять невідоме. Приклад. Розв’язати рівняння
Ø Виділимо повний квадрат у лівій частині рівняння, подавши його у вигляді
Дістанемо таке рівняння:
Увівши параметр
Виберемо параметр
Для параметра
З’ясувавши, що
або
Розглядаючи цей вираз як різницю квадратів двох виразів, подамо її у вигляді
Рівняння розпадається на два рівняння
Приклад. Розв’язати рівняння четвертого степеня
Ø Виділимо повний квадрат:
Тричлен у правій частині буде повним квадратом, якщо його дискримінант дорівнює нулю:
Дістанемо кубічне рівняння відносно а:
Добором знаходимо корінь Підставивши в рівняння (*) значення
або
Остаточно знаходимо розв’язки
4.14. Метод заміни рівняння Іноді розв’язування рівняння можна спростити, звівши його до системи рівнянь із двома невідомими. Приклад. Розв’язати рівняння
Ø Узявши
Нехай
Знаходимо 1) 2) Приклад. Розв’язати рівняння
Ø Позначивши
Віднімаючи почленно перше рівняння від другого маємо:
1) 2) 4.15. Розв’язування рівнянь Розглянемо спочатку найпростіше рівняння
Воно має чотири розв’язки в цілих числах
До рівняння виду (1) зводяться складніші рівняння та системи рівнянь. Приклад. Розв’язати систему рівнянь у цілих числах:
Ø За аналогією до рівняння (1) розв’язуємо такі системи: 1) 2) 3) 4) Приклад. Розв’язати в цілих числах рівняння
Ø Дане рівняння можна записати у вигляді
тобто звести до рівняння виду (1): 1) 2) 3) 4) Розглянемо складніший приклад. Приклад. Розв’язати в цілих числах рівняння
Ø Уведемо параметр
Знаходимо дискримінант лівої частини рівняння:
Корінь з дискримінанта добувається, якщо При цьому знаходимо корені рівняння
а також розклад лівої частини на множники:
Перетворюємо вихідне рівняння до виду (1): 1) 2) 3) 4)
1. Формули для розв’язків квадратного рівняння. 2. Умова знакосталості квадратного тричлена. 3. Формули Вієта. 4. Які рівняння зводяться заміною до квадратного? 5. Метод Феррарі. 6. Розв’язування рівнянь у цілих числах.
Розв’язати рівняння (1 — 45). Відповідь 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. ЛЕКЦІЯ
ІРРАЦІОНАЛЬНІ
Ірраціональним називають таке рівняння, ліва і права частини якого є алгебраїчними виразами, хоча б один із яких ірраціональний. Нагадаємо, що ірраціональними називають такі алгебраїчні вирази, які крім дій додавання, віднімання, множення, ділення та піднесення до степеня з натуральним показником містять також і дії добування кореня m-го степеня. Ірраціональні вирази виду Приклади ірраціональних рівнянь:
В елементарній алгебрі розглядаються лише такі ірраціональні рівняння, в яких радикали парного степеня припускаються арифметичними (невід’ємними), а непарного степеня — додатними або від’ємними, залежно від знака підкореневого виразу. Загальний метод розв’язування ірраціонального рівняння полягає в тому, що спочатку ізолюють один радикал, а далі обидві частини рівняння підносять до степеня, потім знову ізолюють радикал і т. д. Будь-яке ірраціональне рівняння після скінченної кількості таких перетворень можна звести до раціонального. Рівняння, яке дістаємо в результаті, узагалі кажучи, не еквівалентне заданому. Тому, знайшовши розв’язки цього рівняння, потрібно перевірити їх підставленням у дане рівняння і відкинути як сторонні ті з них, які не є розв’язками. Проте якщо обидві частини ірраціонального рівняння підносились до непарного степеня, то перевіряти розв’язок не обов’язково, бо в цьому разі прийдемо до рівняння, еквівалентного даному. Якщо рівняння містить радикали з невідомим у знаменнику, то його потрібно звільнити від знаменника, виконавши відповідні перетворення. Перш ніж приступити до розв’язування ірраціонального рівняння, доцільно визначити область допустимих значень (ОДЗ) для невідомого. У деяких випадках після цього відпадає потреба в розв’язанні. Нехай, скажімо, маємо рівняння
Для першого радикала ОДЗ становлять значення 5.1. Розв’язування найпростіших ірраціональних рівнянь Приклад. Розв’язати ірраціональне рівняння
Ø Добуток двох множників дорівнює нулю тоді й тільки тоді, коли принаймні один із них дорівнює нулю. Отже, маємо: Значення Приклад. Розв’язати рівняння
Ø Знаходимо корені рівнянь Приклад. Розв’язати рівняння
Ø Рівняння має очевидний корінь
Зауважимо, що іноді перш ніж розв’язувати рівняння, доцільно з’ясувати, чи можуть його ліва та права частини бути рівними між собою. Якщо ні, то рівняння, очевидно, не має розв’язків. Приклад. Розв’язати рівняння
Ø Знайшовши ОДЗ Тому дане рівняння не має розв’язків. Приклад. Розв’язати рівняння
Ø Знаходимо ОДЗ із нерівностей:
Звідси випливає, що Рівняння розв’язків не має. Приклад. Розв’язати рівняння
Ø Знаходимо ОДЗ: 5.2. Піднесення обох частин рівняння до квадрата Приклад. Розв’язати рівняння
Ø Підносимо обидві частини рівняння до квадрата:
звідки Значення Приклад. Розв’язати рівняння
Ø Підносимо обидві частини рівняння до квадрата:
звідки відразу знаходимо
Приклад. Розв’язати рівняння
Ø Підносимо обидві частини рівняння до квадрата:
Після зведення подібних членів дістаємо:
Приклад. Розв’язати рівняння
Ø Виконаємо перетворення:
Піднісши обидві частини останнього рівняння до квадрата, дістанемо:
Знайдене значення х не задовольняє рівняння, а отже, Приклад. Розв’язати рівняння
Ø Підносимо обидві частини рівняння до квадрата:
а далі знову підносимо обидві частини перетвореного рівняння до квадрата:
Значення Приклад. Розв’язати рівняння
Ø Підносимо обидві частини рівняння до квадрата:
Після перетворень дістаємо:
5.3. Метод заміни Нерідко заміною підкореневого виразу можна звести ірраціональне рівняння до раціонального. Приклад. Розв’язати рівняння
Ø Позначивши
Повертаючись до початкових позначень, маємо:
Приклад. Розв’язати рівняння
Ø Позначивши
Повертаючись до початкових позначень, маємо:
Приклад. Розв’язати рівняння
Ø Позначивши
Повертаючись до початкових позначень, маємо:
Приклад. Розв’язати рівняння
Ø Позначивши
Повертаючись до початкових позначень, маємо:
Приклад. Розв’язати рівняння
Ø Позначимо Розв’язуючи рівняння: Остаточно маємо: Приклад. Розв’язати рівняння
Ø Позначивши
Приклад. Розв’язати рівняння
Ø Виконаємо таке перетворення:
Скориставшись заміною
Повертаємось до початкових позначень:
Приклад. Розв’язати рівняння
Ø Позначимо
Рівняння Розв’язуючи рівняння Приклад. Розв’язати рівняння
Ø Позначивши
Повертаючись до початкових позначень, маємо:
Корінь Приклад. Розв’язати рівняння
Ø Позначивши
Повернувшись до початкових позначень, знайдемо 5.4. Виділення повного квадрата Розв’язуючи ірраціональні рівняння, часто використовують метод виділення повного квадрата. Приклад. Розв’язати рівняння
Ø Виділимо під радикалами повний квадрат
або
Розв’язуючи це рівняння на проміжках Приклад. Розв’язати рівняння
Ø Позначивши
Звідси випливає: Приклад. Розв’язати рівняння
Ø Перетворимо ліву частину рівняння:
або Далі маємо:
або Приклад. Розв’язати рівняння
Ø Під знаком кореня маємо повний квадрат:
Знаходимо ОДЗ:
З першої системи визначаємо З другої системи маємо Корінь Приклад. Розв’язати рівняння
Ø Виділяємо повний квадрат:
У результаті заміни
Позначивши
Узявши
Віднімаючи почленно друге рівняння від першого, маємо:
Розв’язуємо останнє рівняння:
Оскільки 5.5. Множення обох частин рівняння на вираз, Приклад. Розв’язати рівняння
Ø Помножимо обидві частини рівняння на вираз, спряжений до виразу в лівій частині:
Після перетворень дістаємо рівняння
або
Маємо корінь рівняння
Підносимо обидві частини цього рівняння до квадрата:
Корінь Приклад. Розв’язати рівняння
Ø Ліву і праву частини рівняння помножимо і поділимо на відповідні спряжені вирази:
Виконавши перетворення, дістенемо рівняння
ліва і права частини якого мають спільний множник Приклад. Розв’язати рівняння
з кубічними ірраціональностями. Ø Помноживши ліву і праву частини даного рівняння на вираз Дістанемо різницю кубів:
Звідси після спрощень маємо:
Виконавши заміну
5.6. Однорідні ірраціональні рівняння Рівняння виду
називається однорідним. Воно зводиться до квадратного рівняння заміною
Приклад. Розв’язати рівняння
Ø Скориставшись позначенням
дістанемо рівняння
Переходячи до початкових позначень, маємо:
Приклад. Розв’язати рівняння
Поділивши обидві частини рівняння на х, дістанемо:
Візьмемо У початкових позначеннях маємо:
Корінь 5.7. Розклад на множники
Ø Знайдемо спочатку ОДЗ з нерівностей
ОДЗ: Винесемо спільний множник за дужки:
Піднесемо обидві частини рівняння до квадрата і виконаємо відповідні перетворення:
Остаточно маємо:
Дата добавления: 2014-01-11; Просмотров: 8267; Нарушение авторских прав?; Мы поможем в написании вашей работы! |