КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Исследование управляемого движения с помощью передаточных функций
Оценки управляемости различных ЛА принято рассматривать как их реакцию на скачкообразное (ступенчатое) отклонение органов управления и на отклонение по гармоническому закону. При ступенчатом отклонении изучаются переходные или временные характеристики (функции) ЛА, а при гармоническом - частотные. Частотные характеристики системы (звена) определяются как зависимость отношения амплитуды выходной величины к амплитуде входного сигнала и сдвига по фазе выходной величины по отношению к входному сигналу от частоты входного воздействия. При изучении переходных характеристик (процессов) удобно пользоваться передаточными функциями, а частотных характеристик - частотными функциями. Передаточной функцией называют отношение изображения выходной величины к изображению входной при нулевых начальных условиях: . (11.21) Пример. Пусть задано уравнение, описывающее короткопериодическое движение ЛА, в виде (начальные условия - нулевые): , (11.22) здесь: или Переходя от оригиналов к изображениям, получаем (11.23) и передаточная функция: (11.24) Поскольку знаменатель (11.24) составляется по левой части (11.22), то он является характеристическим полиномом дифференциального уравнения (11.22) с той лишь разницей, что вместо l стоит параметр .Приравнивая к нулю знаменатель передаточной функции (11.24), получим (11.25) Корни этого уравнения называются полюсами передаточной функции или корнями характеристического уравнения (11.22).Если то корни будут комплексными сопряженными (11.26) В этом случае будет переходной процесс изменения выходной величины и звено являются колебательными. Если , то оба корня будут действительными . Процесс будет апериодическим, а звено - апериодическим второго порядка. Выражая через передаточную функцию (11.24), получим . (11.27) Для определения переходной (временной) функции надо за входное воздействие принять ступенчатую функцию, изображение которой . Следовательно . По (11.19) Переходя при помощи таблиц от изображения к оригиналу для случая получим переходную функцию колебательного звена Δ, (11.28) где – передаточный коэффициент, – коэффициент демпфирования, – круговая частота колебаний, – опорная частота или частота недемпфированных колебаний, - сдвиг по фазе . (11.29) В (11.28) первое слагаемое определяет вынужденное движение, а второе – собственное (свободное) колебательное движение, определяющее переходный процесс.
Рассмотрим пример определения одной из характеристик управляемости, в частности с помощью передаточной функции. Эта производная может быть представлена в видe .Изображение Лапласа для знаменателя этого выражения обозначим как передаточную функцию =.Зададим входное воздействие в виде ступенчатого единичного 1(t),имеющего изображение по Лапласу 1/p, и приближенно величину .Передаточная функция в нашем случае имеет вид = p(p) и в соответствии со свойством (11.19) имеем (p). При известной структуре (p) можно вычислить (после взятия пределов) установившееся значение выходной величины =и определить по формуле
Приведем здесь перечень некоторых из решаемых задач динамики полета с помощью передаточных функций. I. Используя знаменатель передаточной функции, можно исследовать динамическую устойчивость (по Ляпунову) по первому приближению, т.к. знаменатель по форме совпадает с характеристическим уравнением с той лишь разницей, что вместо «λ» стоит параметр «p». II. Если в качестве входного воздействия принять в (11.22), то изображение по Лапласу и W(p) = p Y(p) можно использовать для определения установившегося значения переходной функции y(t) на основе теоремы 2) (11.19), т.к. . III. При построении систем автоматического управления (САУ) изучаются передаточные функции «замкнутых» систем, являющихся функциями исходных W(p) и проблема сводится к выбору параметров САУ такими, чтобы характеристики устойчивости и управляемости ВС были оптимальными, удовлетворяющими нормативным документам (АП –23, 25 и др.). IV. Для устойчивых систем от W(p) нетрудно перейти к частотным характеристикам, положив p = iω и исследовать показатели («запасы») устойчивости и управляемости по АФЧХ. V. Некоторые из показателей статической управляемости можно вычислить непосредственно по Wyx(p). VI. С помощью перехода от изображений к оригиналам нетрудно перейти к исследованиям во временной области. В заключении заметим, что обычно для ВС составляются перечни (таблицы, «библиотека») передаточных функций, которые широко используются при решении различных задач динамики полета.
Дата добавления: 2014-01-15; Просмотров: 361; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |