КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нейронные феномены пластичности
Пластичность— фундаментальное свойство клетки, которое проявляется в относительно устойчивых модификациях реакций нейрона и во внутриклеточных его преобразованиях, обеспечивающих изменение эффективности и направленности межнейронных связей. Свойство пластичности нейрона лежит в основе процессов научения и памяти целостного организма, проявляющихся на поведенческом уровне. Выделяют несколько основных феноменов пластичности: привыкание, сенситизацию, клеточные аналоги ассоциативного обучения, явления долговременной потенциации и долговременной депрессии, пластичность пейсмекерного механизма клетки. Привыкание нейрона выражается в постепенном ослаблении его реакции на повторяющийся раздражитель. Восстановление реакции происходит в результате изменения стимула или применения нового, а также после прекращения привычной стимуляции. Время восстановления реакции (секунды — недели) зависит от стимуляции и изучаемого объекта. Сенситизация нейрона— временное усиление его реакции или появление ее на ранее неэффективный стимул, возникающее в результате какого-либо сильного воздействия (например, электрического тока). Время ее сохранения — от нескольких секунд до дней и недель. Сенситизацию связывают с активацией модулирующих нейронов, вызываемой сильным биологически значимым воздействием. Долговременная потенциация (long-term-potentiation, LTP) впервые описана для нейронов гиппокампа. В 1973 г. Т. Блис и Т. Лемо, работая в лаборатории П. Андерсена в Осло (Норвегия), впервые показали, что нейроны гиппокампа обладают выраженными пластическими свойствами, нужными для обучения. Применив высокочастотную электрическую стимуляцию, чтобы вызвать коротаю серию ПД в пресинаптическом нейроне, они получили эффект усиления ответов поетсинаптического нейрона на последующие одиночные импульсы, приходящие от пресинапти-ческой клетки. Эффект мог сохраняться в течение часов—недель. Они назвали такое усиление синаптической проводимости долго-семенной потенциацией, предположив, что постсинаптическая клетка ^Щеляет ретроградный мессенджер, который способен проникать через мембрану пресинаптической клетки. Этим мессенджером, возможно, является окись азота, которая определяет пресинаптическое облегчение у гиппокампальных нейронов млекопитающих. Долговременная потенциация (ДВП) в гиппокампе удовлет-оряет выдвинутому Д. Хеббом критерию обучения — совпадению пресинаптической и постсинаптической активности нейрона. Этот принцип был сформулирован Д. Хеббом в 1949 г. в книге «Организация поведения» в качестве условия, необходимого для образования новых нейронных ансамблей в процессе обучения. В опытах на срезах гиппокампа П. Андерсен и его сотрудники (Andersen P. et al., 1977) показали, что долговременная потенциа-ция обусловлена усиленным выделением медиатора из пресинап-тических окончаний. С помощью электронного микроскопа была подтверждена связь долговременной потенциации с увеличением шипиков на дендритах нейронов гиппокампа и изменением структуры синапсов. Позже ДВП была обнаружена в других структурах мозга — миндалине, мозжечке. ДВП относится к определенному синаптичес-кому контакту. Она выявлена у идентифицированного синапса в простой нервной системе моллюска. Долговременную потенциацию (ДВП) можно обнаружить по увеличению амплитуды и крутизны ВПСП, повышению вероятности генерации ПД, а также по увеличению числа спайков на один тестирующий стимул. Долговременная потенциация часто используется как удобная модель для изучения механизмов научения. Долговременная депрессия (long-term-depression, LTD) состоит в длительном снижении проводимости через синапс. Сравнительно недавно долговременная депрессия (ДВД) обнаружена в коре мозжечка у клеток Пуркинье. Ее можно вызвать совместной низкочастотной стимуляцией (1—4 Гц) двух входов к клеткам Пуркинье: афферентного входа через параллельные волокна к ее дендри-там и входа от лазящих волокон из нижней оливы, посылающей сигналы о совершаемых двигательных рефлексах. Сигнал от лазящего волокна увеличивает приток ионов Са^ к клеткам Пуркинье. Это вызывает в нейроне каскад преобразований, где главная роль принадлежит процессам фосфорилирования-дефос-форилирования. Предполагают, что ДВД возникает вследствие того, что ионы Са2"1" активируют белок фосфатазу, который обеспечивает дефосфорилирование рецепторов на дендритах клеток Пуркинье, снижая тем самым их синаптическую проводимость. Не исключается возможность и второго механизма торможения клеток Пуркинье через долговременную потенциацию тормозного входа к ним от корзин-чатых интернейронов. ДВД возникает только на тех синапсах параллельных волокон к клеткам Пуркинье, возбуждение которых по времени совпадает с сигналом, приходящим из нижней оливы. Таким образом, долговременная депрессия в клетках Пуркинье -" тот механизм пластических изменений в нейроне, благодаря которому в мозжечке формируются условные рефлексы. W1 136 I Клеточные аналоги ассоциативного обучения можно получить многих структурах мозга. Так, 40% нейронов гиппокампа спо-обны к обучению (Котляр Б.И., 1986). Процедура формирования условного рефлекса у нейрона требует, чтобы к нему последовательно, с небольшой задержкой приходили сигналы от условного „ безусловного стимулов. Условным стимулом может быть любое сенсорное или электрическое раздражение, которое вызывает лишь подпороговую реакцию (ВПСП). Безусловный раздражитель должен вызывать у нейрона спайковые разряды (ПД). Под влиянием сочетания «индифферентного» раздражителя с безусловным нейрон, способный к ассоциативному обучению, начинает отвечать на условный стимул реакцией, которая ранее возникала только на безусловное раздражение. У отдельного нейрона можно выработать не только классический условный рефлекс, но и инструментальный. Впервые это показали исследователи из Мичигана Джеймс и Мариана Олдс в 1961 г., а затем и другие исследователи. В опытах Э. Фетца и М.Э. Бейкер (Fetz E., Baker M., 1973) с помощью вживленных электродов регистрировали активность нейронов в двигательной коре у бодрствующей обезьяны. Когда частота ПД случайно превышала некоторый уровень, шкала прибора перед обезьяной освещалась и животное получало положительное подкрепление — несколько капель фруктового сока. В результате такой процедуры активность нейрона возрастала до того уровня, который подкреплялся. С отменой подкрепления частота ПД возвращалась к исходному, фоновому значению (угасание инструментального рефлекса). Параллельная регистрация ЭМГ и механограммы мышцы задней стопы показала, что возрастание частоты спайков нейрона двигательной коры, вызванное обучением, несколько опережает начало электрической и механической активности мышцы. Это позволило утверждать, что инструментальный условный рефлекс был выработан у нейрона, который и запускал двигательную реакцию, а не наоборот. Многие исследования были посвящены формированию аналогов условного рефлекса на различных модельных системах: срезах мозга, изолированной нервной системе моллюска, синапти-чески связанных нейронах. Особенно впечатляющими оказались Результаты изучения клеточных механизмов пластичности на полостью изолированной соме нейрона. Этот препарат впервые был получен у аплизии и применен Р. Баумгартеном с соавторами (Baumgarten R.I. et al., 1971). На виноградной улитке ассоциативное обучение у полностью Полированного нейрона было исследовано Т.Н. Греченко (1979). Сому нейрона, изолированную от отростков, получают при помо- щи обработки ганглиев виноградной улитки протеомитическим феп ментом — трипсином с последующим выдерживанием в термостате при температуре 37—38°С в течение 15-20 мин. После такой процеду. ры нейроны лишаются отростков. Изолированный нейрон может состоять только из сомы или из сомы с культей аксона. Он сохраняет присущую ему фоновую ативность, тип хемочувствительности. В качестве условного стимула (УС) использовались микроаппликация медиаторов (ацетилхолина или серотонина) или прямая деполяризация током через внутриклеточный электрод. Все условные стимулы вызывали лишь ВПСП и были подпороговыми для ПД. В качестве безусловного стимула (БС) применялся раздражитель большой силы, который вызывал устойчивую генерацию ПД. Интервал времени между УС и БС 5-500 мс, интервал между парами стимулов — от 40 с до 3 мин. Через 10—15 сочетаний условный стимул начинал вызывать реакцию, характерную для БС. Условный ответ у разных нейронов сохранялся в течение 5-40 мин. Дополнительное обучение увеличивало время сохранения следового эффекта. Неподкрепление вело к постепенному угасанию условной реакции. 80% нейронов (из 503) продемонстрировали феномен отсроченного обучения. Условный ответ после прекращения процедуры обучения появлялся не сразу, а спустя некоторое время. Интервал от момента прекращения обучения до достижения максимального следового эффекта для разных нейронов составлял от 1—3 до 60 мин и более (Греченко Т.Н., Соколов Е.Н., 1987). Был выявлен локальный характер обучения на одном нейроне. Условные и безусловные раздражители действуют через отдельные локусы мембраны, и условный ответ формируется только между теми участками мембраны, к которым направлены УС и БС. Поэтому на одном изолированном нейроне можно выработать параллельно несколько различных условных рефлексов, включая диф-ференцировку, а также получить их селективное угасание. Эти результаты невозможно объяснить механизмом пресинаптической пластичности: полностью изолированные нейроны лишены каких-либо контактов с другими нейронами. Они указывают на роль пост-синаптического и, вероятно, молекулярных механизмов в становлении следов памяти.
Дата добавления: 2014-01-15; Просмотров: 612; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |