Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Равносильные преобразования

Обозначим через M множество решений системы линейных уравнений (элементами множества M являются n-элементные наборы, удовлетворяющие системе линейных уравнений). Преобразование системы линейных уравнений называется равносильным, если оно не меняет её множество решений. Аналогично, преобразование матрицы называется равносильным, если оно соответствует равносильному преобразованию системы линейных уравнений.

Теорема 3.1 Следующие преобразования матрицы являются равносильными:

I. Умножение строки не ненулевое число.

II. Перестановка строк

III. Прибавление к некоторой строке другой строки, умноженной на число.

Доказательство. Равносильность всех трёх преобразований доказывается по одному плану. Приведём этот план. Пусть M – множество решений исходной системы линейных уравнений, а T – множество решений преобразованной системы линейных уравнений (одним из трёх перечисленных преобразований). Взяв элемент x из M, подстановкой убедимся, что он принадлежит T. Тем самым покажем включение . Далее, от новой системы линейных уравнений можно вернуться к исходной системе, выполнив обратное преобразование. Значит, по доказанному ранее . Объединив оба включения получаем требуемое равенство.

<== предыдущая лекция | следующая лекция ==>
Метод Гаусса решения системы линейных уравнений | Перестановки
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 320; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.