Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Линейная модель множественной регрессии в скалярной и векторной формах. МНК оценки коэффициентов множественной регрессии

Проверка статистических гипотез, доверительные интервалы.

Частная корреляция.

Детерминации.

Коэффициент детерминации, скорректированный коэффициент

Теорема Гаусса-Маркова.

Ковариационная матрица оценок коэффициентов регрессии. Оценка дисперсии ошибок.

Линейная модель множественной регрессии в скалярной и векторной формах. МНК оценки коэффициентов множественной регрессии.

Линейная модель множественной регрессии.

Лекция 4

Вопросы:

Включение в уравнение множественной регрессии того или иного набора факторов связано, прежде всего, с представлением о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:

1) они должны быть количественно измеримы (качественные показатели могут быть проранжированы);

2) факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной зависимости.

Включаемые факторы должны объяснять вариацию зависимой переменной. Если строится модель с р факторами, то для неё можно определить R2 – коэффициент детерминации, который фиксирует долю объясненной вариации признака. Влияние других, не учтенных в модели, факторов оценивается (1–R2) с соответствующей остаточной дисперсией. При дополнительном включении в регрессию (р + 1)-го фактора коэффициент R2 должен возрастать, а остаточная дисперсия уменьшаться. Если этого не происходит, то включаемый фактор является лишним. Насыщение модели лишними факторами приводит к статистической незначимости параметров регрессии.

Как и в парной зависимости возможны разные виды уравнений множественной регрессии: линейные и нелинейные. Ввиду четкой интерпретации параметров наиболее широко используются линейная и степенная функции (степенная легко линеаризуется).

Рассмотрим линейную модель множественной регрессии:

.

По выборке объёма n оценивается уравнение регрессии

,

где неизвестные коэффициенты оцениваются МНК, при котором минимизируется сумма квадратов остатков, позволяя получить систему нормальных уравнений:

Решение системы может быть получено, например, по формулам Крамера:

, при этом

.

Оценим коэффициенты регрессии МНК в матричной форме. Обозначим

, , , ,

Значения признака Матрица объясняющих Вектор Вектор Вектор

переменных, столбцами регрессора j случайных коэффициентов

которой являются Xj ошибок регрессии

Модель множественной регрессии примет вид

,

где Х – детерминированная матрица, Y и - случайные матрицы. Пусть , где - вектор модельных значений. Сумма квадратов остатков минимизируется:

.

Необходимые условия получают дифференцированием по вектору .

.

Аналогично парной регрессии, можно показать, что вектор остатков е всем независимым переменным и S = (1…1)T, а вектор - есть ортогональная проекция вектора Y на гиперплоскость, образованную S и Х. Кроме того,

, .

Если перейти к стандартизованному масштабу:

, , …, ,

уравнение регрессии примет вид:

,

где коэффициенты могут быть определены из системы уравнений

,

здесь и - парные коэффициенты корреляции.

Вернуться от стандартизованного масштаба к обычному можно с помощью соотношений:

, .

И, наконец, параметры уравнения множественной регрессии можно определить с помощью ППП:

· ППП Excel:

а) Сервис/Анализ данных/Описательная статистика

б) Сервис/Анализ данных/Корреляция

в) Сервис/Анализ данных/Регрессия

· ППП Statgraphic:

а) Describe/Numeric Data/Multiple Variable Analysis/ в доп. меню поставить флажки на Summary Statistics, Correlations, Partial Correlations

б) Relate/Multiple Regression.

 

Пример. Известны следующие данные (условные) о сменной добыче угля на одного рабочего Y (т), мощности пласта Х1 (м) и уровне механизации работ Х2 (%), характеризующие процесс добычи угля на 7 шахтах. Предполагая, что между Y, X1, X2 существует линейная корреляционная зависимость, найти её аналитическое выражение.

 

Х1 Х2 Y
       
       
       
       
       
       
       

Решение.

Проверим однородность выборки.

Vy= 30,86067%
   
Vx1= 17,26919%
   
Vx2= 20,55514%
   

Так как все значения меньше 35 %, то выборка однородна, и её можно использовать для анализа.

Вариант решения 1.

Расчет с помощью матричных операций.

Использование матричной формы записи формул и проведения расчетов имеет несколько преимуществ и недостатков.

Преимущества заключаются в том, что запись формул приобретает очень компактный вид: вид формул, представленных в матричном виде, не зависит от количества факторов, включенных в модель, и является очень удобным при расчетах характеристик многофакторных моделей.

Недостатком использования в расчетах матричных формул является необходимость хорошего знания матричной алгебры.

Приведем перечень используемых матричных операций.

Транспонирование – Вставка функции, Категория: Ссылки и массивы, Функции: ТРАНСП.

Вычисление обратной матрицы - Вставка функции, Категория: Математические, Функции: МОБР.

Умножение матриц – Вставка функции, Категория: Математические, Функции: МУМНОЖ.

Выполнение матричных функций имеют следующие особенности:

- для результирующей матрицы нужно выделить необходимое количество ячеек;

- для распространения действий на массив:

· Выделить 1-ю ячейку с расчетами и все ячейки, на которые будет распространено действие функции;

· Нажать и отпустить клавишу «F2»;

· Последовательно нажать, не отпуская, клавиши «Ctrl», «Shift», «Enter», отпустить все три клавиши, и на экране появится содержимое всей матрицы.

 

Вариант решения 2.

1) Составим ,

 

, ,

и

.

 

Таким образом, уравнение множественной регрессии примет вид:

.

Вариант решения 3.

 

Вариант решения 4.

Получим уравнение регрессии в стандартизованном масштабе.

 

На практике часто бывает необходимо сравнение влияние на зависимую переменную различных объясняющих переменных, когда последние выражаются разными единицами измерения. В этом случае используют стандартизованные коэффициенты регрессии и средние показатели эластичности Эj:

, .

Стандартизованный коэффициент регрессии показывает, на сколько величин Sy изменится в среднем зависимая переменная Y при увеличении только j -й объясняющей переменной на Sxj, а средний показатель эластичности Эj – на сколько % (от средней) изменится в среднем Y при увеличении только Хj на1 %.

Пример.

Для данных предыдущего примера имеем:

1)

2) ;

.

 

<== предыдущая лекция | следующая лекция ==>
Модели бинарного выбора | Ковариационная матрица оценок коэффициентов регрессии. Оценка дисперсии ошибок
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 816; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.