Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Выборочный коэффициент детерминации

Выборочный множественный коэффициент детерминации показывает качество подгонки регрессионной модели к эмпирическим значениям и определяется выражением (в отличие от случая модели парной регрессии он обозначается )

(25)

Свойства коэффициента :

1) Коэффициент служит для оценки значимости (качества) уравнения регрессии, является одной из наиболее эффективных оценок адекватности регрессионной модели, характеристикой её прогностической силы.

2) Коэффициент при выполнении 5-го условия КЛММР является состоятельной, но смещённой оценкой генерального коэффициента детерминации , с математическим ожиданием и дисперсией, приближённо определяемыми выражениями

;

.

3) Коэффициент - безразмерная величина, лежащая в пределах 01.

4) При =0 вариация зависимой переменной полностью обусловлена воздействием неучтённых в модели переменных и линия регрессии не улучшает качество предсказания значений по сравнению с тривиальным предсказанием

5) При =1 осуществляется точная подгонка и все эмпирические точки удовлетворяют уравнению регрессии

6) Коэффициент может быть вычислен из матрицы парных коэффициентов корреляции по формуле

(26)

где - определитель симметричной квадратной матрицы выборочных парных коэффициентов корреляции - го порядка

(27)

с элементами

(28)

(29)

где ; ; - алгебраическое дополнение 0 – го элемента 0 – й строки матрицы (27), по сути представляющее собой определитель матрицы межфакторной парной корреляции р – го порядка

(30)

Выражение (26) определяет выборочный множественный коэффициент детерминации р – го порядка (по числу р объединяющих переменных). Множественные коэффициенты детерминации низших порядков определяются аналогичным образом из соответствующих подматриц матриц .

Так, выборочный множественный коэффициент детерминации 1 – го порядка , равный квадрату парного коэффициента корреляции между результирующей и - ой объясняющей переменной , находятся по формуле

(31)

 

где - определитель подматрицы , получаемый из матрицы путём вычёркивания всех строк и столбцов кроме тех, которые соответствуют переменным и (первые - е строка и столбец);

- алгебраическое дополнение 1 – го элемента 1 – й строки этой подматрицы.

Выборочный множественный коэффициент детерминации 2 – го порядка для объясняемой и факторных переменных , определяется выражением

(32)

где - определитель подматрицы , которая находится из матрицы в результате вычёркивания всех строк и столбцов кроме тех, которые отвечают ,и ; - алгебраическое дополнение 1 – го элемента 1 – й строки полученной подматрицы.

Выборочные множественные коэффициенты детерминации более высоких порядков находятся аналогичным образом.

7) Величина , вообще говоря, возрастает при добавлении новых регрессоров (поскольку растёт ), хотя это не обязательно означает улучшение качества регрессионной модели.

Поскольку присоединение в уравнение регрессии каждой новой предикторной переменной не может уменьшить величины коэффициента детерминации (независимо от порядка присоединения), множественные коэффициенты детерминации различных порядков удовлетворяют цепочке неравенств

(33)

Попытка устранить эффект, связанный с ростом при добавлении новых объясняющих переменных, является коррекция на число регрессоров.

 

<== предыдущая лекция | следующая лекция ==>
Анализ вариации зависимой переменной | Скорректированный коэффициент детерминации
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 715; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.