КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теоретическая ковариация
Если х и у - случайные величины, то теоретическая ковариация sху определяется как математическое ожидание произведения отклонений этих величин от их средних значений: рор.cov (х, у) = sху = Е {(x - mx) (у - mу)} 6. Если теоретическая ковариация неизвестна, то для ее оценки может быть использована выборочная ковариация, вычисленная по ряду наблюдений. К сожалению, оценка будет иметь отрицательное смещение, так как Е {Cov (x,y)} = pop.cov (x, y) 7. Причина заключается в том, что выборочные отклонения измеряются по отношению к выборочным средним значениям величин х и у и имеют тенденцию к занижению отклонений от истинных средних значений. Очевидно, мы можем рассчитать несмещенную оценку путем умножения выборочной оценки на п /п -1. Правила для теоретической ковариации точно такие же, как и для выборочной ковариации, но их доказательства мы опускаем, поскольку для этого требуется интегральное исчисление. Если х и у независимы, то их теоретическая ковариация равна нулю благодаря свойству независимости и факту, что Е (х) и Е(у) равняются соответственно m х и m у. Е {(x - mx) (y - m y)} = E (x - m x) (y - m y) = 0 x 0 8.
Дата добавления: 2014-01-20; Просмотров: 1799; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |