Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дифракция Фраунгофера

 

Дифракция в параллельных лучах была рассмотрена Фраунгофером в 1821 -1822 гг. Для получения пучка параллельных лучей света, падающих на щель или отверстие, обычно пользуются небольшим источником света, который помещается в фокусе собирающей линзы Л.

Пусть параллельный пучок монохроматического света падает нормально на непрозрачный экран, в котором прорезана узкая щель ВС, имеющая постоянную ширину b и длину l»b (рис.4.5).

Оптическая разность хода между крайними лучами ВМ и CN, идущими от щели под углом j к оптической оси линзы OF0

Разобьем щель ВС на зоны Френеля, имеющие вид полос, параллельных ребру в щели. Ширина каждой зоны выбирается (согласно методу зон Френеля) так, чтобы разность хода от краев этих зон была равна l/2. При интерференции света от каждой пары соседних зон амплитуда результирующих колебаний равна нулю, так как эти зоны вызывают колебания с одинаковыми амплитудами, но противоположными фазами. Всего на ширине щели уместится n зон. Если число зон n четное, т.е.

(4.9)

то наблюдается дифракционный минимум (темная полоса).

Если число зон нечетное, т.е.

(4.10)

то наблюдается дифракционный максимум (светлая полоса).

В направлении j =0 наблюдается самый интенсивный центральный максимум нулевого порядка.

Распределение интенсивности на экране, полученное вследствие дифракции (дифракционный спектр) приведено на рис.4.5б. Расчеты показывают, что интенсивности в центральном и последующем максимумах относятся как 1:0,045:0,016:0,008:..., т.е. основная часть световой энергии сосредоточена в центральном максимуме.

Углы, под которыми наблюдаются максимумы всех порядков, начиная с первого, зависят от длины волны света l. Поэтому, если щель освещать немонохроматическим светом, то максимумы, соответствующие разным длинам волн, будут наблюдаться под разными углами и, следовательно, будут пространственно разделены на экране.

6.Дифракционная решетка.

Дифракционная решетка - важнейший спектральный прибор, предназначенный для разложения света в спектр и измерения длин волн.

Она представляет собой плоскую стеклянную или металлическую поверхность, на которой нарезано очень много (до сотен тысяч) прямых равноотстоящих штрихов.

Рассмотрим простейшую идеализированную решетку, состоящую из N одинаковых равноотстоящих параллельных щелей, сделанных в непрозрачном экране. Ширину щели обозначим b, а ширину непрозрачных промежутков между щелями - а. Величина d=a+b называется периодом или постоянной дифракционной решетки. Лучшие решетки имеют d =0,8 мкм, т.е. 1200 штрихов на 1 мм.

 

На рис. 4.6 а показано только несколько щелей. Дифракционная картина от решетки получается в результате дифракции на каждой щели и интерференции лучей, падающих от разных щелей. Главные максимумы соответствуют таким углам j, для которых колебания от всех N щелей складываются в фазе, т.е.,где Ej - амплитуда колебания, посылаемого одной щелью под углом j. Интенсивность максимума:

(4.11)

т.е. может превышать в сотни миллионов раз интенсивность максимума, создаваемого одной щелью.

Условие главных максимумов имеет вид

(4.12)

Разность хода равна целому числу длин волн.

 

Максимум нулевого порядка наблюдается при j= О, первого порядка при sinj=±l/d, второго порядка при sin j=±2l/d (рис. 4.7б).

 

 

Главные минимумы соответствуют таким углам j, в направлении которых ни одна из щелей не распространяет свет. Таким образом, условие главных минимумов выражает формула bsinj=±ml, m=1,2,3 Первый главный минимум наблюдается при sinj=±l/b

Кроме главных максимумов, имеется большое число слабых побочных максимумов, разделенных дополнительными минимумами. На рис. 4.7б они изображены между главными максимумами.

Положение главных максимумов, кроме центрального, зависит от длины волны l. Поэтому при пропускании через решетку белого света все максимумы ненулевого порядка, разложатся в спектр, фиолетовый конец которого обращен к центру дифракционной картины, а красный - наружу. Таким образом, дифракционная решетка представляет собой спектральный прибор.

<== предыдущая лекция | следующая лекция ==>
Принцип Гюйгенса-Френеля | Лекция 1. Тема 1: Сущность и содержание таможенного контроля и таможенного оформления товаров транспортных средств
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 298; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.