КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Расчет дисперсии для вариационного ряда
Осуществляется при помощи взвешенной формулы: -2- Недостаток дисперсии состоит в том, что она имеет размерность вариант, возведенную в квадрат (рублей в квадрате, человек в квадрате) Чтобы устранить этот недостаток, используется среднее квадратическое отклонение 4.Среднее квадратическое отклонение
Среднее квадратическое отклонение имеет единицы измерения, а также может принимать положительные и отрицательные значения, поскольку получается в результате извлечения квадратного корня. С помощью СКО можно утверждать, что i-тое значение признака в совокупности находится в пределах:
Коэффициент вариации
Характеризует долю усредненного значения отклонений от средней величины. При этом совокупность считается однородной, если V не превышает 33% При V > 33% совокупность неоднородна, для дальнейшего статистического анализа следует либо исключить крайние значения признака, либо разбить совокупность на однородные группы. Требование к однородности данных присутствует практически во всех видах статистического анализа
-3-
Правило трех сигм В условиях нормального распределения существует зависимость между величиной σ и количеством наблюдений: в пределах располагается 68,3 % наблюдений; в пределах располагается 94,5 % наблюдений; в пределах располагается 99,7 % наблюдений. На практике почти не встречаются отклонения, которые превышают 3σ. Отклонение в 3σ может считаться максимальным При помощи этого правила можно получить примерную оценку σ: Признаки, которыми обладают одни единицы совокупности и не обладают другие, называются альтернативными. Количественно вариация альтернативного признака проявляется в значении 0 у единиц, которые им не обладают, или в значении 1 у единиц, которые им обладают Правило сложения дисперсий Выделяют дисперсии: 1) общую 2) межгрупповую 3) внутригрупповую Величина общей дисперсии характеризует вариацию признака под воздействием всех факторов, вызывающих эту вариацию:
где j – номер варианты Межгрупповая дисперсия (дисперсия групповых средних или факторная дисперсия) характеризует систематическую вариацию, т. е. различия в величине изучаемого признака, возникающие под влиянием одного фактора, положенного в основание группировки
где -4- Внутригрупповая (средняя из групповых или остаточная) дисперсия характеризует случайную вариацию, т. е. ту часть вариации, которая вызвана действием других неучтённых факторов, и не зависящую от фактора, положенного в основании группировки:
Общая дисперсия равна сумме межгрупповой и внутригрупповой дисперсий:
Эмпирический коэффициент детерминации: Эмпирический коэффициент детерминации показывает долю общей вариации изучаемого признака, обусловленную вариацией группировочного признака (факторного) Эмпирическое корреляционное отношение
характеризует степень влияния группировочного признака на результативный показатель. Эмпирическое корреляционное отношение изменяется в пределах от -1 до 1. Чем ближе IηI к единице, тем степень влияния больше -1 ≤ η ≤ 1 Показатели асимметрии Симметричным называется такое распределение, при котором варианты, равноотстоящие от средней, имеют равные частоты. Если распределение асимметрично, частоты вариантов, равноотстоящих от средней, не равны между собой Если А = 0 распределение симметрично Если А > 1 имеет место правосторонняя асимметрия Если А < 1 имеет место левосторонняя асимметрия -5-
Дата добавления: 2014-01-20; Просмотров: 564; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |