Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение линейного оператора




Лекция №4. Линейные операторы

В общем курсе математического анализа изучаются функции одного или нескольких вещественных переменных. Например, в случае функции трех вещественных переменных можно говорить о функции, аргументом которой является свободный вектор трехмерного пространства. Ниже мы будем изучать функции, аргументом которых будет вектор произвольного линейного пространства. Причем мы рассмотрим простейшие типы таких функций, а именно линейные функции. При этом линейные числовые функции векторного аргумента, т.е. функции, значения которых суть числа называют линейными формами (функционалами), а линейные векторные функции векторного аргумента, значения которых суть векторы называют линейными операторами (отображениями, преобразованиями).

Пусть заданы два различных непустых множества и , элементы которых будем обозначать буквами соответственно и .

Определение 1. Правило (закон), по которому любому элементу ставится в соответствие единственный элемент называется оператором, действующим из в .

Если оператор обозначить буквой ,то результат его применения к элементу записывают в виде

Множество называется областью определения оператора , элемент при этом называется образом элемента , а сам элемент прообразом элемента . Совокупность всех образов называется областью значений оператора . Если каждый элемент ′ имеет только один прообраз, то оператор называется взаимно однозначным. Множество элементов , удовлетворяющих равенству , называются ядром оператора .

Будем в дальнейшем под и понимать линейное пространство .

Определение 2. Оператор называется линейным, если для любых двух векторов и из и произвольного числа выполняются условия:

1. (аддитивность);

2. (однородность).

Покажем, что любой линейный операторможно задать, указав некоторый набор чисел. Действительно, выберем в пространстве некоторый базис и обозначим через x произвольный вектор из , а через его образ, то есть

Выпишем разложения векторов и по выбранному базису

где и координаты векторов соответственно и в базисе . Если подставить первое из последних равенств в правую часть предыдущего равенства и использовать линейность оператора, то получим

Векторы принадлежат пространству и, следовательно, в выбранном базисе можем написать

где ‑ координаты вектора в базисе . Подставив последние равенства в правую часть предыдущего равенства и, используя разложение вектора в выбранном базисе, получим

Используя единственность разложения вектора в данном базисе, приравняем коэффициенты при базисных векторах в левой и правой частях последнего равенства. При этом получим

(4.1)

Непосредственно из формулы (4.1) видно, что правило перехода от вектора к вектору или от точкик новой точке полностью определяется квадратной матрицей

, (4.2)

составленной из коэффициентов формул (4.1).

Определение. Матрица называется матрицей линейного оператора в базисе , а сам этот оператор называют оператором с матрицей в базисе .

Если ввести в рассмотрение одностолбцовую матрицу

(4.3)

и вычислить произведение матриц

то получим одностолбцовую матрицу, элементами которой являются суммы, стоящие в правых частях равенств (4.1).

Если же ввести в рассмотрение матрицу

(4.4)

и воспользоваться понятием равенства матриц, то система (4.1) может быть записана в виде

(4.5)




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 661; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.