КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод фазовых траекторий
Метод описания колебаний путем построения траектории тражения системы в плоскости -. Рассмотрим еще один наглядный способ графического представления произвольных (не только гармонических) колебаний. Пусть закон колебательного движения описывается функцией , которая обязательно является периодической. По известному закону движения можно определить зависимость скорости от времени, как производную от координаты . Введем на плоскости систему декартовую систему координат, вдоль одной из осей которой будем откладывать координату точки, а вдоль другой − ее скорость. Введенная таким образом система называется фазовой плоскостью. Две функции x(t) и v(t) в любой момент времени определяют на этой плоскости некоторую точку, а геометрическое место этих точек образует некоторую непрерывную линию, которая называется фазовой траекторией или фазовым портретом. Траектория движения точки в плоскости называется фазовым портретом. Особенно просто выглядит фазовая траектория гармонического колебания, при котором координата и скорость описываются функциями , Из этих уравнений следует, что уравнение фазовой траектории можно записать в виде: , которое является уравнением эллипса с полуосями и .
С помощью фазовой диаграммы легко качественно (не проводя числовых расчетов) анализировать характер колебания. Например, для затухающих колебаний фазовая диаграмма будет представлять собой скручивающуюся спираль, при наличии усиления – спираль будет раскручиваться.
Дата добавления: 2014-01-20; Просмотров: 350; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |