Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Аналитическое выражение проективного преобразования плоскости




Пусть дано проективное преобразование , заданное парой реперов и . Точка - произвольная точка в репере , точка - образ точки при преобразовании .

Пусть , тогда . Обозначим координаты точки относительно репера . Найдем связь координат точки в двух проективных реперах: для этого воспользуемся формулами перехода от репера к реперу (лекция 2), причем - новые координаты точки , а

- старые координаты этой точки. Получим:

 

Это и есть формулы проективного преобразования плоскости.

- матрица проективных преобразований. Определитель матрицы отличен от нуля, так как точки не лежат на одной прямой.

На расширенной аффинной (или евклидовой) плоскости можно ввести неоднородные координаты. Воспользовавшись формулами , имеем: . Тогда формулы проективных преобразований плоскости в неоднородных координатах примут следующий вид: , .

Пусть - проективное отображение прямой на прямую . - проективный репер на прямой , - проективный репер на прямой .

Определение 6.3. Отображение прямой на прямую , которое каждой точке прямой , имеющей в репере координаты , ставит в соответствие точку , принадлежащую прямой с теми же координатами в репере , называется проективным.

Если , то - проективное преобразование, то есть проективное отображение прямой на себя также называется проективным преобразованием.

По аналогии с нахождением формул проективных преобразований плоскости можно получить формулы проективных преобразований прямой: . Определитель матрицы, составленной из коэффициентов правых частей данных формул проективных преобразований на прямой, отличен от нуля. На расширенной аффинной (или евклидовой) прямой, введя неоднородные координаты, имеем следующую формулу: .

Определение 6.4. Проективное преобразование прямой называется инволюцией, если оно совпадает со своим обратным преобразованием.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 864; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.