Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механическая система. Силы внешние и внутренние




Вынужденные колебания с вязким сопротивлением.

Свободные колебания с вязким сопротивлением.

Существуют устройства (демпферы), которые создают силу пропорциональную относительной скорости (рис.36). Коэффициент пропорциональности называется коэффициентом демпфирования или коэффициентом вязкого сопротивления.

 

Рис.36

 

Дифференциальное уравнение движения точки с массой m, закрепленной на упругом элементе и демпфере имеет вид:

 

или,,.

Начальные условия имеют вид:,,.

Характеристическое уравнение имеет вид:.

Корни характеристического уравнения равны:

Рассмотрим возможные решения:

1-й случай,,

Решение имеет вид:

 

, - условная амплитуда затухающих колебаний;

 

Рис.37

 

- круговая или циклическая частота затухающих колебаний. Измеряется в рад/сек.

- фазовый угол (или просто фаза).

 

- период затухающих колебаний (рис.37).

- частота колебаний (1 колеб/cек=1 Гц)

- декремент колебаний.

- логарифмический декремент колебаний.

Материальная точка совершает гармонические колебания с частотой и амплитудой, величина которой все время убывает.

Движение изображающей точки на фазовой плоскости показано на рис. 38.

 

Рис.38

 

 

2-й случай,,

Решение имеет вид:

 

Материальная точка совершает затухающее неколебательное движение (рис.39).

 

Рис.39

 

3-й случай, (два одинаковых корня)

Решение имеет вид:

 

Материальная точка так же совершает затухающее неколебательное движение (рис.39).

 

Рассмотрим движение точки под действием трех сил: одна восстанавливающая сила, вторая - сила демпфирования (сила вязкого сопротивления), а третья зависит от времени. -гармоническая возмущающая сила.

- амплитуда возмущающей силы.

- круговая частота возмущающей силы.

 

Рис.40

 

Дифференциальное уравнение движения точки с массой m, закрепленной на упругом элементе и демпфере (рис.40), под действием возмущающей гармонической силы имеет вид:

 

Задавая решение уравнения в виде: и подставляя его в дифференциальное уравнение получим алгебраическое уравнение для определения амплитуды вынужденных колебаний.

.

Разделим его на массу и обозначим,, тогда и окончательно

- амплитуда вынужденных колебаний.

- частота собственных колебаний

Материальная точка колеблется с амплитудой и частотой возмущающей силы.

Построим зависимость модуля амплитуды от частоты возмущающей силы (рис.41).

 

Рис.41

 

Модуль амплитуды вынужденных колебаний возрастает от (при) до некоторой величины, а затем убывает до нуля (при).

Лекция 4

Механической системой материальных точек или тел называется такая их совокупность, в которой положение или движение каждой точки (или тела) зависит от положения и движения всех остальных.

Материальное абсолютно твердое тело мы также будем рассматривать как систему материальных точек, образующих это тело и связанных между собой так, что расстояния между ними не изменяются, все время остаются постоянными.

Классическим примером механической системы является солнечная система, в которой все тела связаны силами взаимного притяжения. Другим примером механической системы может служить любая машина или механизм, в которых все тела связаны шарнирами, стержнями, тросами, ремнями и т.п. (т.е. различными геометрическими связями). В этом случае на тела системы действуют силы взаимного давления или натяжения, передаваемые через связи.

Совокупность тел, между которыми нет никаких сил взаимодействия (например, группа летящих в воздухе самолетов), механическую систему не образует.

В соответствии со сказанным, силы, действующие на точки или тела системы, можно разделить на внешние и внутренние.

Внешними называются силы, действующие на точки системы со стороны точек или тел, не входящих в состав данной системы.

Внутренними называются силы, действующие на точки системы со стороны других точек или тел этой же системы. Будем обозначать внешние силы символом -, а внутренние -.

Как внешние, так и внутренние силы могут быть в свою очередь или активными, или реакциями связей.

Реакции связей или просто – реакции, это силы которые ограничивают движение точек системы (их координаты, скорость и др.). В статике это были силы заменяющие связи. В динамике для них вводится более общее определение.

Активными или задаваемыми силами называются все остальные силы, все кроме реакций.

Необходимость этой классификации сил выяснится в следующих главах.

Разделение сил на внешние и внутренние является условным и зависит от того, движение какой системы тел мы рассматриваем. Например, если рассматривать движение всей солнечной системы в целом, то сила притяжения Земли к Солнцу будет внутренней; при изучении же движения Земли по её орбите вокруг Солнца та же сила будет рассматриваться как внешняя.

Внутренние силы обладают следующими свойствами:

1. Геометрическая сумма (главный вектор) всех внутренних сил системы равняется нулю. В самом деле, по третьему закону динамики любые две точки системы (рис.31) действуют друг на друга с равными по модулю и противоположно направленными силами и, сумма которых равна нулю. Так как аналогичный результат имеет место для любой пары точек системы, то

 

 

Рис.31

 

2. Сумма моментов (главный момент) всех внутренних сил системы относительно любого центра или оси равняется нулю. Действительно, если взять произвольный центр О, то из рис.18 видно, что. Аналогичный результат получится при вычислении моментов относительно оси. Следовательно, и для всей системы будет:

или.

Из доказанных свойств не следует однако, что внутренние силы взаимно уравновешиваются и не влияют на движение системы, так как эти силы приложены к разным материальным точкам или телам и могут вызывать взаимные перемещения этих точек или тел. Уравновешенными внутренние силы будут тогда, когда рассматриваемая система представляет собою абсолютно твердое тело.

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 655; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.