Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема о движении центра масс




В ряде случаев для определения характера движения системы (особенно твердого тела), достаточно знать закон движения ее центра масс. Например, если бросить камень в цель, совсем не нужно знать как он будет кувыркаться во время полета, важно установить попадет он в цель или нет. Для этого достаточно рассмотреть движение какой-нибудь точки этого тела.

Чтобы найти этот закон, обратимся к уравнениям движения системы и сложим по­членно их левые и правые части. Тогда получим:

.

Преобразуем левую часть равенства. Из формулы для радиус-вектора центра масс имеем:

.

Беря от обеих частей этого равенства вторую производную по времени и замечая, что производная от суммы равна сумме произ­водных, найдем:

 

или

.

где - ускорение центра масс системы. Так как по свойству вну­тренних сил системы, то, подставляя все найденные значения, получим окончательно:

(4)

Уравнение и выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил. Сравнивая с уравнением дви­жения материальной точки, получаем другое вы­ражение теоремы: центр масс системы движется как мате­риальная точка, масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Проектируя обе части равенства на координатные оси, получим:

 

Эти уравнения представляют собою дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Значение доказанной теоремы состоит в следующем.

1) Теорема дает обоснование методам динамики точки. Из урав­нений видно, что решения, которые мы получаем, рассмат­ривая данное тело как материальную точку, определяют закон движения центра масс этого тела, т.е. имеют вполне конкрет­ный смысл.

В частности, если тело движется поступательно, то его движе­ние полностью определяется движением центра масс. Таким образом, поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных слу­чаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс.

2) Теорема позволяет при определении закона движения центра масс любой системы исключать из рассмотрения все наперед неиз­вестные внутренние силы. В этом состоит ее практическая ценность.

Так движение автомобиля по горизонтальной плоскости может происходить только под действием внешних сил, сил трения, действующих на колеса со стороны дороги. И торможение автомобиля тоже возможно только этими силами, а не трением между тормозными колодками и тормозным барабаном. Если дорога гладкая, то как бы не затормаживали колеса, они будут скользить и не остановят автомобиль.

Или после взрыва летящего снаряда (под действием внутренних сил) части, осколки его, разлетятся так, что центр масс их будет двигаться по прежней траектории.

Теоремой о движении центра масс механической системы следует пользоваться для решения задач механики, в которых требуется:

- по силам, приложенным к механической системе (чаще всего к твердому телу), определить закон движения центра масс;

- по заданному закону движения тел, входящих в механическую систему, найти реакции внешних связей;

- по заданному взаимному движению тел, входящих в механическую систему, определить закон движения этих тел относительно некоторой неподвижной системы отсчета.

С помощью этой теоремы можно составить одно из уравнений движения механической системы с несколькими степенями свободы.

При решении задач часто используются следствия из теоремы о движении центра масс механической системы.

Следствие 1. Если главный вектор внешних сил, приложенных к механической системе, равен нулю, то центр масс системы находится в покое или движется равномерно и прямолинейно. Так как ускорение центра масс равно нулю,.

Следствие 2. Если проекция главного вектора внешних сил на какую-нибудь ось равна нулю, то центр масс системы или не изменяет своего положения относительно данной оси, или движется относительно нее равномерно.

Например, если на тело начнут действовать две силы, образующие пару сил (рис.38), то центр масс С его будет двигаться по прежней траектории. А само тело будет вращаться вокруг центра масс. И неважно, где приложена пара сил.

Кстати, в статике мы доказывали, что действие пары на тело не зависит от того, где она приложена. Здесь мы показали, что вращение тела будет вокруг центральной оси С.

 

Рис.38

 

Пример 10. Человек перешел с кормы лодки на нос. Определим перемещение лодки s (рис.39). Вес лодки – Р 1, человека – Р 2, длина лодки – l. Сопротивление движению не учитываем.

Определим движение центра масс С системы, состоящей из человека и лодки.

 

Рис.39

 

Составляем дифференциальное уравнение движения центра масс по оси х: Но так как проекции внешних сил, и на ось х равны нулю, то Проинтегрировав дважды это уравнение, получим и Но в начале движения система была неподвижна Значит,

Найдем координату в первом положении системы, когда человек находился на корме, как координату центра тяжести:

 

И во втором положении, когда человек перейдет на нос лодки:

 

Приравниваем координаты, т.к.

 

Из этого равенства находим перемещение лодки

 

 

Пример 11. Рассмотрим систему, которая состоит из однородного стержня ОА и кольца М. Стержень длины L и массы вращается вокруг горизонтальной оси, проходящей через точку О (рис.40). Кольцо массы m может без трения скользить по стержню. К нему прикреплена пружина, коэффициент жесткости которой равен С. Положение кольца на стержне определяется координатой. Определим проекции реакции опоры О на оси неподвижной декартовой системы координат Oxy.

 

Рис.40

 

Запишем уравнение теоремы о движении центра масс для рассматриваемой механической системы в векторном виде.

(5)

Силы взаимодействия кольца со стержнем и пружиной есть внутренние силы системы, поэтому в уравнении они в явном виде не присутствуют. Проектируя уравнение (5) на оси системы координат Oxy, получаем

(6)

По формулам (1) находим координаты центра масс системы

, (7)

затем, дифференцируя (7), запишем

,

,

и, наконец, вычисляя вторые производные, получим

(8)

 

Подставляя (8) в уравнения (6), получаем проекции реакции в опоре O на оси неподвижной системы координат:

 

 


Если в полученные уравнения подставить значения обобщенных координат и ускорений для какого-либо момента времени, можно найти величины искомых проекций.

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 516; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.