КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Примесные полупроводники
Некоторые примеси, называемые электрически активными, существенно увеличивают проводимость полупроводников. Электрически активные примеси - это, как правило, атомы, замещающие в узлах кристаллической решетки атомы основного вещества. При этом валентность примесных атомов должна быть (для влияния на проводимость полупроводников) большей или меньшей, чем валентность атомов, которые они замещают; при равных валентностях примесные атомы не будут электрически активными. Рассмотрим, например, кристалл кремния, в который чаще всего вводят атомы фосфора или бора. На рисунке показана плоская модель решетки кремния с примесью 5-валентного
Рис. 1.15. фосфора. Для образования в решетке ковалентных связей с ближайшими соседями достаточно четырех валентных электронов атома фосфора. Пятый - “избыточный” валентный электрон атома фосфора не может свободно перемещаться по кристаллу, ибо он “привязан” к атому фосфора (принято говорить - локализован). Однако связь этого электрона с атомом фосфора, т.е. с кристаллической решеткой, слабая, и при незначительных энергетических воздействиях электрон может стать свободным; иначе говоря, электрон попадает в зону проводимости Примеси, способные поставлять в зону проводимости электроны, называют донорами. Донор, отдавший в зону проводимости электрон, становится положительно заряженным неподвижным ионом. На энергетической схеме состояния “избыточных” электронов, связанных с донорами, обозначают в виде уровней - черточек, расположенных в запрещенной зоне. Энергетический зазор ЕD между дном зоны проводимости и донорными уровнями равен минимальной энергии, необходимой для разрыва связи “избыточного” электрона с донором, т.е. для перевода этого электрона в зону проводимости. Величину ЕD называют энергией ионизации донора. Обычно в полупроводниках ЕD << Eg (для фосфора в кремнии, например, ЕD @ 0,045 эВ, тогда как Eg @ 1,12 эВ.), поэтому при повышении температуры кристалла в зону проводимости переводятся в первую очередь “избыточные” электроны доноров. В этих условиях n >> p, следовательно, электропроводность полупроводника с донорной примесью обусловлена в основном электронами в зоне проводимости. Такой полупроводник называют полупроводником n - типа, или электронным полупроводником, а свободные электроны в нем - основными носителями заряда. Дырки в полупроводнике n - типа называют неосновными носителями. Уровень Ферми в полупроводнике n - типа лежит между уровнями “избыточных” электронов доноров и дном зоны проводимости. Теперь рассмотрим случай, когда в кристалле кремния отдельные его атомы замещены атомами бора. Поскольку бор трехвалентен, структура ковалентных связей в его окрестности будет недоукомлектованной. Такой атом способен засчет относительно слабого энергетического воздействия захватить электрон из какой-либо ковалентной связи
Рис. 1.16.
соседнего атома кремния. В результате захвата образуются неподвижный отрицательный ион бора и дырка, которая может перемещаться по кристаллу под действием внешнего электрического поля. Примеси, способные захватывать электроны из валентной зоны, называются акцепторами. На энергетической схеме состояния валентных электронов, захваченных атомами бора, показаны в виде уровней - черточек, расположенных выше потолка валентной зоны на интервал энергии ЕА. Величину ЕА называют энергией ионизации акцептора. Обычно в полупроводниках ЕА << Еg, поэтому с увеличением температуры в полупроводнике, содержащем акцепторные атомы, в первую очередь появляются дырки за счет переходов электронов из валентной зоны на акцепторные уровни. Электропроводность полупроводника с акцепторной примесью обусловлена в основном дырками в валентной зоне. Такой полупроводник называется полупроводником р - типа или дырочным полупроводником, а дырки в нем - основными носителями заряда, небольшое число свободных электронов, появившихся за- счет переброса их из валентной зоны в зону проводимости, называют неосновными носителями заряда. Уровень Ферми в полупроводнике р - типа лежит между акцепторными уровнями и потолком валентной зоны. Проводимость полупроводника n - типа
а проводимость полупроводника р - типа, соответственно, равна
.
Температурная зависимость проводимости в примесных полупроводниках в основном определяется температурной зависимостью концентрации носителей заряда. Для примера на рисунке изображена зависимость (в логарифмическом масштабе) концентрации n электронов в полупроводнике n - типа от обратной температуры.
Рис.1.17.
В области низких температур (участок 1 - 2) с увеличением температуры концентрация электронов в зоне проводимости экспоненциально увеличивается за счет ионизации доноров. При температуре Т2 практически все доноры оказываются ионизированными. На участке 2 - 3 концентрация электронов в зоне проводимости почти не меняется, т.к. доноры уже истощились, а тепловая энергия еще недостаточна для заметного возбуждения электронов в валентной зоне. Концентрация электронов в области 2 -3 равна концентрации доноров. По мере дальнейшего повышения температуры полупроводника интенсивность заброса электронов из валентной зоны в зону проводимости увеличивается настолько, что концентрация собственных свободных электронов становится намного больше концентрации примесных. Температурная зависимость проводимости примесного полупроводника при низких температурах (участок 1 - 2) и при высоких температурах (участок 3 - 4) определяется видом функции n (T), так как подвижность носителей заряда сравнительно слабо зависит от температуры. На участке 2 - 3, где концентрация электронов в зоне проводимости от температуры не зависит, проявляется температурная зависимость подвижности носителей заряда. При увеличении температуры от Т2 до Т3 проводимость уменьшается, поскольку с повышением температуры тепловые колебания кристаллической решетки полупроводника усиливаются и подвижности электронов и дырок уменьшаются.
Дата добавления: 2014-01-11; Просмотров: 572; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |