КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Термодинамические критерии направленности биохимических превращений
Биохимические процессы в организме происходят самопроизвольно в определённом направлении, обеспечивающем их нормальную жизне-деятельность. Изменения энтальпии или внутренней энергии системы, происходящие в соответствии с первым законом термодинамики, позволяют количественно определить тепловой эффект реакции, превращения различных форм энергии, параметры обмена биохимических систем веществом и энергией с окружающей средой, но эти термодинамические функции не могут служить критериями, определя-ющими направление реакций, возможность их самопроизвольного осуществления. Они также не позволяют оценить, какое количество энергии должна получить биохимическая система для того, чтобы инициировать в ней самопроизвольное превращение. Согласно второму закону термодинамики таким критерием является термодинамическая функция, получившая название энтропии. Энтропия выражает собой отношение изменения тепловой энергии в ходе реакции или процесса к температуре. Она служит показателем термодинамического состояния системы и её изменение не зависит от пути биохимического превращения, а определяется как разность между конечным и начальным состоянием системы. Для изотермических процессов, которые характерны для биохимических систем (проходят при постоянной температуре), изменение энтропии определяется соотношением: ΔQ DS = S2 – S1 = T где DQ – количество тепла, выделяемое или поглощаемое системой в ходе процесса. Для многих органических и неорганических веществ рассчитаны значения энтропии при стандартных условиях, которые выражаются в джоулях в расчёте на 1 моль вещества и на 1 кельвин (единица абсолютной термодинамической температурной шкалы). Некоторые из этих величин приведены в таблице 7. Используя стандартные энтропии химических соединений, можно рассчитать изменение энтропии в ходе биохимической реакции, которое равно разности стандартных энтропий продуктов реакции и реагирующих веществ (с учётом коэффициентов в уравнении реакции): S˚ = ∑ S˚продуктов - ∑ S˚реагентов Функция энтропии характеризует ту часть энергии системы, которую невозможно превратить в работу или использовать для синтеза веществ в организме. При любом самопроизвольном процессе количество такой энергии увеличивается и, когда оно достигает максимума, способность системы к самопроизвольным превращениям утрачивается. Таким образом, чем меньше энтропия, тем большей способностью к самопроизвольному процессу обладает система. При самопроизвольных процессах в закрытых системах энтропия возрастает и поэтому изменение энтропии будет величиной положительной (DS > 0). Живые организмы и входящие в их состав различные биохимические системы представляют собой открытые системы и у них в результате обмена энергией с окружающей средой при самопроизвольном процессе энтропия системы может уменьшаться, а энтропия окружающей среды возрастает до такого уровня, при котором суммарное изменение энтропии системы и окружающей среды остаётся величиной положительной, то есть общее изменение энтропии в системе и окружающей среде при самопроизвольном процессе выражается в виде следующего неравенства: DSпроцесса = ∑ DSсистемы + ∑ DSсреды > 0 В полной мере такое неравенство может быть показано на примере целого функционирующего организма. В процессе роста и развития организма его энтропия уменьшается, а энтропия окружающей среды увеличивается. При этом возрастает способность организма к самопроизвольным биохимическим превращениям. Исходя из указанного неравенства, для оценки возможности и направления самопроизвольного превращения в биохимической системе необходимо определить изменение энтропии как в системе, так и в окружающей среде. Однако рассчитать изменение энторпии в окружающей среде практически невозможно, поэтому в термодинамических расчётах для биохимических систем обычно определяют величину изменения энтропии только в системе и используют этот показатель для оценки другой термодинамической функции – свободной энергии. Свободная энергия – это часть общей энергии системы, которая может быть использована для выполнения работы, а в живом организме – для синтеза жизненно необходимых веществ, создания электрохимического потенциала в клеточных мембранах, переноса веществ и ионов против градиента концентрации и др. Она является функцией состояния системы, поэтому её изменение, как и энтропии и энтальпии, не зависит от того, каким путём происходит переход системы от одного состояния к другому. Если термодинамические параметры системы оценивают при постоянном давлении и температуре, характерном для живых организмов, то указанную термодинамическую функцию называют свободной энергией Гиббса. Изменение этой функции в изобарно-изотермическом процессе связано с изменением энтальпии и энтропии в виде следующего уравнения: DG = DH - TDS. Экспериментально и теоретически установлено, что при самопроизвольных (спонтанных) процессах, происходящих в организмах, свободная энергия системы уменьшается, в связи с чем изменение свободной энергии в ходе такого процесса будет величиной отрицательной. Если, например, система самопроизвольно переходит из состояния, характеризующегося запасом свободной энергии G1, в другое состояние с запасом свободной энергии G2, то G2 будет меньше G1, в связи с чем изменение свободной энергии будет равно DG = G2 – G1 < 0 (при постоянных температуре и давлении). Таким образом, в данных условиях изменение свободной энергии является критерием самопроизвольности процесса: при отрицательном значении изменения свободной энергии (DG < 0) система способна к спонтанному биохимическому превращению, а если DG > 0, то самопроизвольный ход превращения в системе невозможен. В этом случае положительное значение изменения свободной энергии показывает, какое количество свободной энергии должно поступить в систему для самопроизвольного осуществления данной биохимической реакции или данного процесса. Отрицательное значение изменения свободной энергии кроме того показывает, какое количество свободной энергии выделяется в ходе процесса и поступает в окружающую среду или отдаётся другой биохимической системе. Следует также отметить, что в биоэнергетических системах изменение свободной энергии, как правило, не равно нулю, что наблюдается при наступлении термодинамического равновесия. Однако биохимические системы в ходе превращений веществ почти никогда не достигают истинного химического равновесия. Для них характерны так называемые стационарные состояния, когда поддерживаются определённые скорости притока веществ и энергии в систему и их оттока из системы, так как образующиеся в ходе реакции продукты не накапливаются, а подвергаются дальнейшим превращениям. При достижении стационарного состояния обеспечиваются максимальные скорости биохимических превращений, которые сопровождаются также значительным уменьшением или увеличением свободной энергии. Биохимические реакции, в ходе которых свободная энергия системы уменьшается (DG < 0), принято называть экзергоническими, а реакции, при которых свободная энергия в системе возрастает (DG > 0), – эндергоническими. Эгзергонические реакции происходят самопроизвольно и они сопровождаются переходом системы на более низкий энергетический уровень в результате выделения свободной энергии. Эндергонические реакции могут происходить самопроизвольно только при условии притока необходимой для их осуществления свободной энергии из окружающей среды или другой биохимической системы, в которой происходит экзергоническая реакция. С целью проведения термодинамических расчётов определены стандартные свободные энергии образования многих химических веществ, включая и важнейшие биохимические продукты, из химических элементов или простых веществ при стандартных условиях. Некоторые из этих показателей представлены в табл. 8. 8. Стандартные свободные энергии образования некоторых биохимических продуктов
Зная стандартные свободные энергии образования химических веществ, можно рассчитать изменение свободной энергии в любой реакции, происходящей в стандартных условиях. Оно равно разности суммарных изменений свободной энергии продуктов реакции и реагирующих веществ (с учётом коэффициентов в уравнении реакции): DG˚реакции = ∑ DG˚ продуктов - ∑ DG˚ реагентов Если хотя бы для одного из реагирующих веществ или продуктов реакции нет сведений о стандартной свободной энергии образования, изменение свободной энергии в ходе биохимического превращения рассчитывают другим способом в зависимости от того, какие имеются сведения о компонентах биохимической системы. Довольно часто для определения DG˚ используют сведения о стандартных энтальпиях образования и стандартных энтропиях химических веществ. На основе этих данных изменение свободной энергии рассчитывают по формуле: DG˚реакции = DH˚реакции - TDS˚реакции, где DH˚реакции = ∑DН˚продуктов - ∑DН˚реагентов; DS˚реакции = ∑S˚продуктов - ∑S˚реагентов; Т - стандартное значение температуры (298,16 К). Если известна константа равновесия биохимической реакции, то расчёт изменения свободной энергии в этой реакции при стандартных условиях очень легко выполнить в соответствии с уравнением: DG˚΄ = –RТ lnКр, где R - универсальная газовая постоянная (8,314 Дж×моль-1×К-1 ), Т – стандартная температура (298,16 К), Кр – константа равновесия биохимической реакции при рН = 7,0 и постоянном давлении. Как следует из указанного уравнения, при значениях константы равновесия химической реакции больше единицы (Кр > 1) lnКр будет величиной положительной, а согласно уравнению изменение свободной энергии в ходе реакции отрицательно (DG˚΄< 0). А если константа равновесия реакции меньше единицы (Кр < 1), то в этом случае ln Кр имеет отрицательное значение, а DG становится величиной положительной, что является показателем эндергонического превращения. Константа равновесия химической реакции может быть рассчитана, если известны равновесные концентрации реагирующих веществ и продуктов реакции. Она в соответствии с законом действующих масс выражается как отношение произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций реагирующих веществ, у которых показатели степени равны стехиометрическим коэффициентам в уравнении реакции. Для химической реакции хА+уB ® nС + rD константа равновесия будет равна: [C]ⁿ ·[D]ʳ Кр = [A]ˣ·[B]ʸ С учётом более строгого соответствия указанных расчётов закону действующих масс необходимо вместо концентраций ввести активности реагирующих веществ и продуктов реакции. Однако физиологические растворы в клетках организмов довольно сильно разбавлены и растворённые в них химические вещества имеют сравнительно низкие концентрации, которые по своей величине очень мало отличаются от активностей, в связи с чем при расчёте констант равновесия биохимических реакций поправки на активность обычно не вводятся. К тому же для многих биохимических продуктов их активности в физиологической среде пока точно не установлены. В организмах важную роль играют окислительно-восстановительные реакции, в которых происходит перенос электронов от вещества - донора к веществу - акцептору. В зависимости от типа реакции и природы фермента - переносчика осуществляется перенос одного или пары электронов и одновременно с электронами возможен также перенос протонов (Н+). В результате переноса электронов изменяются электрические заряды донора и акцептора электронов и их окислительно-восстановительные потенциалы. По величине окислительно-восстановительных потенциалов определяется направленность и возможность самопроизвольного осуществления биохимических реакций, происходящих в живых организмах. Донором электронов служит биохимическая система, имеющая наименьший окислительно-восстановительный потенциал (наиболее отрицательный), а конечным акцептором электронов – система с наибольшим окислительно-восстановитель-ным потенциалом (имеющим менее отрицательное или наибольшее положительное значение). В цепи переносчиков перенос электронов осуществляется от окислительно-восстановительной системы с отрицательным потенциалом к системе с менее отрицательным или положительным потенциалом, то есть электроны с помощью переносчиков передаются от одной окислительно-восстановительной системы к другой в направлении возрастания величины окислительно-восстановительного потенциала. Для сравнения величины окислительно-восстановительных потенциалов различных биохимических систем используют стандартные окислительно-восстановительные потенциалы, которые определяют по сравнению с нормальным водородным электродом в стандартных термодинамических условиях. Учитывая, что величины окислительно-восстановитель-ных потенциалов зависят от степени ионизации реагирующих веществ и образующихся продуктов, которая в значительной степени определяется концентрацией катионов водорода (Н+), стандартные окислительно-восстановительные потенциалы биохимических систем определяют при рН = 7,0 и обозначают символом Е°ˈ. Значения стандартных окислительно-восстановительных потенциалов наиболее важных биохимических систем показаны в табл. 9. Из этих данных мы видим, что они находятся в интервале между значениями потенциалов водородного и кислородного электродов (от –0,42В до 0,82В при РН= 7,0). В биохимических системах в процессе переноса электронов при осуществлении окислительно-восстановительных реакций происходит значительное изменение свободной энергии, связанной с величиной стандартных окислительно-восстановительных потенциалов донора и акцептора электронов следующим уравнением: DG°΄ = - nFDЕ°΄, где n - число переносимых электронов от молекулы–донора на молекулу– акцептора; F – постоянная Фарадея (96406 Дж×В-1); DЕ°΄ – разность стандартных окислительно-восстановительных потенциалов акцептора и донора электронов при рН=7,0 (DЕ°΄акц. - DЕ°΄дон.); DG°΄ – изменение свободной энергии в джоулях при стандартных условиях (рН=7,0). Так, например, в реакциях обмена азотистых веществ происходит окислительно-восстановительная реакция превращения окисленной формы глютатиона в восстановленную с участием восстановленных динуклео-тидов НАДФ×Н: глютатион-S-S-глютатион + НАДФ×Н + Н+ ¾® 2глютатион- SН + НАДФ+ В ходе реакции происходит перенос двух электронов и двух протонов от НАДФ×Н + Н+ на окисленный глютатион. Стандартный окислительно-восстановительный потенциал системы восстановлен-ный/окисленный глютатион при рН=7,0 равен – 0,23В, а для системы НАДФ+/ НАДФ×Н – 0,32В. Разность стандартных окислительно-восстановительных потенциалов акцептора и донора электронов будет равна: DЕ°΄ = Е°΄акцт. - Е°΄дон. = Е°΄глют.окисл. - Е°΄НАДФ×Н = -0,23В + 0,32В = 0,09В. 9. Стандартные окислительно-восстановительные потенциалы некоторых биохимических окислительно-восстановительных систем
Изменение свободной энергии в этой реакции в расчёте на 1 моль окисленного глютатиона при стандартных условиях рассчитаем по указанной выше формуле: DG°΄ = –nFDЕ°΄ = -2×96406×0,09 = -17353 Дж»-17,35 кДж. В связи с тем, что изменение свободной энергии в рассматриваемой реакции отрицательно, она осуществляется самопроизвольно. Мы рассмотрели основные способы определения изменения свободной энергии в биохимических системах при стандартных условиях. Однако условия физиологической среды в клетках организмов очень сильно отличаются от стандартных условий и особенно большие отличия наблюдаются по температуре и концентрации веществ. Стандартная температура 25°С, а температура физиологической среды у разных организмов изменяется в довольно широких пределах, у растений, например, от 0°С до 50°С. Концентрация веществ в физиологической среде также очень сильно отличается от стандартной (1 моль/л), обычно она составляет сотые и даже тысячные доли моля на 1 л. Изменение свободной энергии вещества в зависимости от температуры и его концентрации в физиологической среде, выражается следующим уравнением: DGфизиол. = DG°΄ + RTlnC, где - DG°΄ – стандартное изменение свободной энергии при рН =7,0; R – универсальная газовая постоянная (8,31 Дж×моль-1× К-1); Т – температура физиологической среды в единицах шкалы абсолютных температур (в кельвинах); С – концентрация реагирующего вещества или продукта реакции в физиологической среде (моль/л). Используя данное уравнение, можно определить в ходе реакции изменение свободной энергии для каждого компонента биохимической системы, находящегося в физиологической среде. В связи с тем, что концентрации веществ в физиологической среде меньше стандартной концентрации (1 моль/л) и выражаются дробными числами, показатель lnC в указанном выше уравнении будет иметь отрицательные значения, поэтому DGфизиол. всегда будет меньше DG°΄, определённого при стандартных условиях. А если происходит экзергоническая реакция, то в разбавленных физиологических растворах вероятность её самопроизвольного осуществления существенно возрастает.
Дата добавления: 2014-01-11; Просмотров: 595; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |