КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Построение доверительных интервалов
Интервальное оценивание неизвестных параметров. При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, что приводит к грубым ошибкам. Поэтому в таком случае лучше пользоваться интервальными оценками, то есть указывать интервал, в который с заданной вероятностью попадает истинное значение оцениваемого параметра. Разумеется, чем меньше длина этого интервала, тем точнее оценка параметра. Поэтому, если для оценки Θ* некоторого параметра Θ справедливо неравенство | Θ* - Θ | < δ, число δ > 0 характеризует точность оценки (чем меньше δ, тем точнее оценка). Но статистические методы позволяют говорить только о том, что это неравенство выполняется с некоторой вероятностью. Определение 1. Надежностью (доверительной вероятностью) оценки Θ* параметра Θ называется вероятность γ того, что выполняется неравенство | Θ* - Θ | < δ. Если заменить это неравенство двойным неравенством – δ < Θ* - Θ < δ, то получим: p (Θ* - δ < Θ < Θ* + δ) = γ. Таким образом, γ есть вероятность того, что Θ попадает в интервал (Θ* - δ, Θ* + δ). Определение 2. Доверительным называется интервал, в который попадает неизвестный параметр с заданной надежностью γ.
1. Доверительный интервал для оценки математического ожидания нормального распределения при известной дисперсии. Пусть исследуемая случайная величина Х распределена по нормальному закону с известным средним квадратическим σ, и требуется по значению выборочного среднего р ( Тогда, с учетом того, что
=2Ф(t), где Отсюда
Итак, значение математического ожидания а с вероятностью (надежностью) γ попадает в интервал
Пример. Найдем доверительный интервал для математического ожидания нормально распределенной случайной величины, если объем выборки п = 49, Определим t, при котором Ф(t) = 0,9:2 = 0,45: t = 1,645. Тогда
2. Доверительный интервал для оценки математического ожидания нормального распределения при неизвестной дисперсии. Если известно, что исследуемая случайная величина Х распределена по нормальному закону с неизвестным средним квадратическим отклонением, то для поиска доверительного интервала для ее математического ожидания построим новую случайную величину
где Поскольку плотность распределения Стьюдента
явным образом не зависит от а и σ, можно задать вероятность ее попадания в некоторый интервал (- tγ, tγ), учитывая четность плотности распределения, следующим образом: Отсюда получаем:
Таким образом, получен доверительный интервал для а, где tγ можно найти по соответствующей таблице при заданных п и γ. Пример. Пусть объем выборки п = 25, Тогда
3. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения. Будем искать для среднего квадратического отклонения нормально распределенной случайной величины доверительный интервал вида (s – δ, s +δ), где s – исправленное выборочное среднее квадратическое отклонение, а для δ выполняется условие: p (|σ – s | < δ) = γ. Запишем это неравенство в виде:
Рассмотрим случайную величину χ, определяемую по формуле
которая распределена по закону «хи-квадрат» с п -1 степенями свободы. Плотность ее распределения
не зависит от оцениваемого параметра σ, а зависит только от объема выборки п. Преобразуем неравенство (4) так, чтобы оно приняло вид χ1 < χ < χ2. Вероятность выполнения этого неравенства равна доверительной вероятности γ, следовательно,
или, после умножения на
Тогда
Замечание. Если q > 1, то с учетом условия σ > 0 доверительный интервал для σ будет иметь границы
Пример. Пусть п = 20, s = 1,3. Найдем доверительный интервал для σ при заданной надежности γ = 0,95. Из соответствующей таблицы находим q (n = 20, γ = 0,95) = 0,37. Следовательно, границы доверительного интервала: 1,3(1-0,37) = 0,819 и 1,3(1+0,37) = 1,781. Итак, 0,819 < σ < 1,781 с вероятностью 0,95.
Дата добавления: 2014-01-11; Просмотров: 758; Нарушение авторских прав?; Мы поможем в написании вашей работы! |