КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Проверка статистических гипотез. Определение 1. Статистической гипотезой называют гипотезу о виде неизвестного распределения генеральной совокупности или о параметрах известных
Определение 1. Статистической гипотезой называют гипотезу о виде неизвестного распределения генеральной совокупности или о параметрах известных распределений.
Определение 2. Нулевой (основной) называют выдвинутую гипотезу Н 0. Конкурирующей (альтернативной) называют гипотезу Н 1, которая противоречит нулевой.
Пример. Пусть Н 0 заключается в том, что математическое ожидание генеральной совокупности а = 3. Тогда возможные варианты Н 1: а) а ≠ 3; б) а > 3; в) а < 3.
Определение 3. Простой называют гипотезу, содержащую только одно предположение, сложной – гипотезу, состоящую из конечного или бесконечного числа простых гипотез.
Пример. Для показательного распределения гипотеза Н 0: λ = 2 – простая, Н 0: λ > 2 – сложная, состоящая из бесконечного числа простых (вида λ = с, где с – любое число, большее 2).
В результате проверки правильности выдвинутой нулевой гипотезы (такая проверка называется статистической, так как производится с применением методов математической статистики) возможны ошибки двух видов: ошибка первого рода, состоящая в том, что будет отвергнута правильная нулевая гипотеза, и ошибка второго рода, заключающаяся в том, что будет принята неверная гипотеза. Замечание. Какая из ошибок является на практике более опасной, зависит от конкретной задачи. Например, если проверяется правильность выбора метода лечения больного, то ошибка первого рода означает отказ от правильной методики, что может замедлить лечение, а ошибка второго рода (применение неправильной методики) чревата ухудшением состояния больного и является более опасной.
Определение 4. Вероятность ошибки первого рода называется уровнем значимости α. Основной прием проверки статистических гипотез заключается в том, что по имеющейся выборке вычисляется значение некоторой случайной величины, имеющей известный закон распределения.
Определение 5. Статистическим критерием называется случайная величина К с известным законом распределения, служащая для проверки нулевой гипотезы.
Определение 6. Критической областью называют область значений критерия, при которых нулевую гипотезу отвергают, областью принятия гипотезы – область значений критерия, при которых гипотезу принимают.
Итак, процесс проверки гипотезы состоит из следующих этапов: 1) выбирается статистический критерий К; 2) вычисляется его наблюдаемое значение Кнабл по имеющейся выборке; 3) поскольку закон распределения К известен, определяется (по известному уровню значимости α) критическое значение kкр, разделяющее критическую область и область принятия гипотезы (например, если р (К > kкр) = α, то справа от kкр располагается критическая область, а слева – область принятия гипотезы); 4) если вычисленное значение Кнабл попадает в область принятия гипотезы, то нулевая гипотеза принимается, если в критическую область – нулевая гипотеза отвергается.
Различают разные виды критических областей: - правостороннюю критическую область, определяемую неравенством K > kкр (kкр > 0); - левостороннюю критическую область, определяемую неравенством K < kкр (kкр < 0); - двустороннюю критическую область, определяемую неравенствами K < k 1, K > k 2 (k 2 > k 1).
Определение 7. Мощностью критерия называют вероятность попадания критерия в критическую область при условии, что верна конкурирующая гипотеза. Если обозначить вероятность ошибки второго рода (принятия неправильной нулевой гипотезы) β, то мощность критерия равна 1 – β. Следовательно, чем больше мощность критерия, тем меньше вероятность совершить ошибку второго рода. Поэтому после выбора уровня значимости следует строить критическую область так, чтобы мощность критерия была максимальной.
Критерий для проверки гипотезы о вероятности события.
Пусть проведено п независимых испытаний (п – достаточно большое число), в каждом из которых некоторое событие А появляется с одной и той же, но неизвестной вероятностью р, и найдена относительная частота появлений А в этой серии испытаний. Проверим при заданном уровне значимости α нулевую гипотезу Н 0, состоящую в том, что вероятность р равна некоторому значению р 0. Примем в качестве статистического критерия случайную величину , (1) имеющую нормальное распределение с параметрами M (U) = 0, σ (U) = 1 (то есть нормированную). Здесь q 0 = 1 – p 0. Вывод о нормальном распределении критерия следует из теоремы Лапласа (при достаточно большом п относительную частоту можно приближенно считать нормально распределенной с математическим ожиданием р и средним квадратическим отклонением ). Критическая область строится в зависимости от вида конкурирующей гипотезы. 1) Если Н 0: р = р 0, а Н 1: р ≠ р 0, то критическую область нужно построить так, чтобы вероятность попадания критерия в эту область равнялась заданному уровню значимости α. При этом наибольшая мощность критерия достигается тогда, когда критическая область состоит из двух интервалов, вероятность попадания в каждый из которых равна . Поскольку U симметрична относительно оси О у, вероятность ее попадания в интервалы (-∞; 0) и (0; +∞) равна 0,5, следовательно, критическая область тоже должна быть симметрична относительно О у. Поэтому икр определяется по таблице значений функции Лапласа из условия , а критическая область имеет вид .
Замечание. Предполагается, что используется таблица значений функции Лапласа, заданной в виде , где нижний предел интегрирования равен 0, а не -∞. Функция Лапласа, заданная таким образом, является нечетной, а ее значения на 0,5 меньше, чем значения стандартной функции Ф (х) (см. лекцию 6).
Далее нужно вычислить наблюдаемое значение критерия: . (2) Если | Uнабл | < uкр, то нулевая гипотеза принимается. Если | Uнабл | > uкр, то нулевая гипотеза отвергается. 2) Если конкурирующая гипотеза Н 1: р > p 0, то критическая область определяется неравенством U > uкр, то есть является правосторонней, причем р (U > uкр) = α. Тогда . Следовательно, икр можно найти по таблице значений функции Лапласа из условия, что . Вычислим наблюдаемое значение критерия по формуле (2). Если Uнабл < uкр, то нулевая гипотеза принимается. Если Uнабл > uкр, то нулевая гипотеза отвергается. 3) Для конкурирующей гипотезы Н 1: р < p 0 критическая область является левосторонней и задается неравенством U <- uкр, где икр вычисляется так же, как в предыдущем случае. Если Uнабл > - uкр, то нулевая гипотеза принимается. Если Uнабл < - uкр, то нулевая гипотеза отвергается.
Пример. Пусть проведено 50 независимых испытаний, и относительная частота появления события А оказалась равной 0,12. Проверим при уровне значимости α = 0,01 нулевую гипотезу Н 0: р = 0,1 при конкурирующей гипотезе Н 1: р > 0,1. Найдем Критическая область является правосторонней, а икр нахо-дим из равенства Ф(икр) = Из таблицы значений функции Лапласа определяем икр = 2,33. Итак, Uнабл < uкр, и гипотеза о том, что р = 0,1, принимается.
Дата добавления: 2014-01-11; Просмотров: 524; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |