Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Получение разностного уравнения на основе интегрального уравнения




Пусть интегральное уравнение имеет вид:

. (5.20)

По определению интеграл представляет собой площадь криволинейной трапеции (рис. 5.11). При использовании метода прямоугольников для численного интегрирования получаем следующую сумму

, (5.21)

Рис.5.11. Дискретизация интегрального уравнения методом прямоугольников

т.е. площадь криволинейной трапеции заменяется приближенно суммарной площадью прямоугольников с основанием D t и высотой u (i). Тогда для i -1-го шага, т.е. предыдущего отчета имеем:

. (5.22)

Вычтя выражение (5.22) из (5.21) получим уравнение вида:

,

т.е. разностное уравнение вида:

, (5.23)

где а1 =-1; b1 =D t /T.

Отсюда

, (5.24)

где b1=b1.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 412; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.