Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритмичные и программные методы построения динамических сцен в реальном времени

Рассмотрим задачу поворота символа с шагом 22,50, описанного матрицей 16´16 точек.

Первая матрица изображения символа (16´16 или 208´208) в восьмеричной системе счисления имеет вид:

 

А 0,0; A 0,1; ……; A 0,16; A 0,17

А 1,0; A 1,1; ……; A 1,16; A 1,17

…………………….……

А 16,0; A 16,1; …..; A 16,16; A 16,17

А 17,0; A 17,1; ……; A 17,16; A 17,17,

а в условных (т.е. не привязанных к конкретной точке экрана) восьмеричных адресах эта матрица выглядит так:

 

0, 1, ……16, 17

20, 21, …… 36, 37

………….………….

340, 341, …... 356, 357

360, 361, …... 376, 377.

 

 
   
 
Аналогично представлены следующие - вторая и третья матрицы изображения. Как было показано выше из базовых символов, повернутых на углы 00 и 450 и имеющих две оси симметрии, получаются по 4 изображения символа с азимутальными направлениями 00, 900, 1800, 2700 и 450, 1350, 2250, 3150 соответственно. А из изображения базового символа, повернутого на угол 22,50 и имеющего три оси симметрии, получается 8 символов с азимутальными направлениями 22,50; 67,50; 112,50; 157,50; 202,50; 247,50; 292,50; 337,50.

При необходимости отобразить поворот по определенному признаку (конкретной величине угла поворота или номеру его азимутального направления) выбирается базовая матрица символа и соответствующий порядок ее считывания. Затем с помощью подпрограммы типа «цикл в цикле» считывается записанная в ОЗУ базовая матрица и на экране дисплея отображается изображение выбранного символа в нужном азимутальном направлении. Предлагаемый метод реализован в программе, по которой из трех базовых матриц изображений символа на экране видеотерминала формируется 16 изображений такого символа, ориентированных в различных азимутальных направлениях. Программа отображает последовательную выдачу всех 16 изображений, в целом отображающую маневр объекта в реальном времени.

Исследования показали, что скорость вычислений получается максимальной в том случае, когда основные составляющие программы сформированы в отдельные модули, которые представляют собой независимые фрагменты.

Известно, что движение символов на экране геоинформационного комплекса можно задать с помощью последовательности операций поворота и параллельного переноса. Операция параллельного переноса является простой для программной реализации и достаточно быстрой, поскольку требует не более двух операций сложения целых чисел для каждой точки символа. Операция поворота символа требует большого количества машинных ресурсов, поскольку требует для своего выполнения в общем случае четыре операции умножения действительных чисел.

Количество операций в алгоритме поворота существенно сократится по сравнению с известными методами, если использовать алгоритм Брезенхема для построения прямых.

Выберем точку начала относительной системы координат . Для удобства вычислений можно взять одну из вершин прямоугольной матрицы, в которой хранится растровое изображение символа . Для этой точки вычисляются ее координаты после поворота с помощью синусно-косинусного преобразования.

Предлагается подсчитать значения тангенса и котангенса угла поворота и присвоить dx1:=h1∙tg( ); dy1:=h2∙ctg( ). Матрица растрового изображения символа , которая соответствует символу после поворота на угол вычисляются по циклу:

x1:=x’-dx2; y1:=y’-dy2;

от i:=0 до X начать

j:=0; x:=x+dx1; y1:=y1+1;

если int{x}=int{x-dx1} то x1:=x1+1;

x2:=x1;y2:=y1;

S'[i,j]:=S[x1,y1];

от j:=1 до Y начать

x2:=x2+1; y:=y+dy1;

если int{y2}=int{y2-dy1} то y2:=y2+1;

S’[x2,y2]:=S[i,j];

конец цикла;

конец цикла;

Предлагаемый алгоритм быстрого экономичного поворота обеспечивает меньшее количество операций за счет того, что в нем совершается лишь одно сложение вещественных чисел, а две другие операции сложения в теле цикла осуществляются для целых чисел, что позволяет производить их выполнение в четыре раза быстрее, (в рассматриваемом примере использовались 16-ти разрядные числа). С учетом изложенного количество операций при выполнении поворота будет равно , где - количество элементов в матрице символа, в то время как известные методы поворота предусматривают не менее операций, то есть время выполнения составит 22% от времени выполнения описанных в литературе алгоритмов.

 

<== предыдущая лекция | следующая лекция ==>
Метод базовых матриц | Матрично-функциональный метод расчета данных для отображения процесса перемещения сложного символа на фоне топографической карты в ГИС ОУ
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 771; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.