КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Представления конечных автоматов
Автомат может быть задан различными способами, например, путем словесного описания его функционирования или перечислением элементов множеств X, Y, S, с указанием отношений между ними. При анализе и синтезе конечных автоматов используются стандартные формы представления: таблицы, графы и матрицы. Элементы множеств X, Y, S удобно пронумеровать порядковыми числами, начиная с нуля, например: Х = {0, 1, 2, 3},
Обе таблицы можно объединить в общую таблицу переходов, если условиться записывать в клетках пары чисел (номер следующего состояния в числителе и номер выхода в знаменателе), т. е.
Граф автомата строится таким образом, что его вершины соответствуют состояниям, а направленные дуги обозначаются как дизъюнкции входов, под воздействием которых совершается переход из одного состояния в другое по направлению дуги. В знаменателях записываются номера выходов, соответствующие этим переходам.
Матрица соединения автомата М (или матрица переходов) представляет собой квадратную таблицу, в которой номера строк и столбцов соответствуют номерам состояний. Клетка матрицы на пересечении i -й строки и j -го столбца заполняется дизъюнкцией пар «вход-выход», которая приписана дуге графа исходящей из i -й в j -ю вершину. При отсутствии такой ветви клерка заполняется нулем или остается свободной. Так для рассматриваемого примера имеем:
Дата добавления: 2014-01-13; Просмотров: 1003; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |