КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Потенциальный баpьеp. Туннельный эффект
Пpохождение частицы чеpез одномеpный
Различие в поведении квантовых и классических частиц проявляется в том случае, если на пути частицы встречается потенциальный барьер (при , при ) При данных условиях задачи классическая частица, обладая Е (полная энергия частицы), либо беспрепятственно пройдет над барьером (при E > U), либо отразится от него (при E < U) и будет двигаться в обратную сторону. Для микрочастицы же, даже при , имеется отличная от нуля вероятность, что она отразится от барьера. При имеется также отличная от нуля вероятность, что частица окажется в области x > l, т.е. проникнет сквозь барьер. Подобные выводы следуют из решения уравнения Шредингера для стационарных состояний. Рассмотрим случай , тогда для областей 1 и 3 имеем для области 2 . Общие решения этих дифференциальных уравнений: (для области 1) (для области 2) (для области 3) где , . Решение вида соответствует волне, распространяющейся в положительном направлении оси х, а решение вида - волне, распространяющейся в противоположном направлении. В области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо. Поэтому коэффициент следует принять равным нулю. Для нахождения остальных коэффициентов воспользуемся условиями, которым должна удовлетворять функция y. Для того чтобы y была непрерывна во всей области изменений х от - ¥ до + ¥, должны выполняться условия: и . Для того чтобы y была гладкой, т.е. не имела изломов, должны выполняться условия: и . Отношение квадратов модулей амплитуд отраженной и падающей волны (7.11) определяет вероятность отражения частицы от потенциального барьера и называется коэффициентом отражения. Отношение квадратов модулей амплитуд прошедшей и падающей волны определяет вероятность прохождения частицы через барьер и называется коэффициентом прохождения (прозрачности). Для барьера конечной ширины (7.12) В случае барьера произвольной формы При преодолении потенциального барьера частица как бы проходит через «туннель» в нем, в связи с чем данное явление называется туннельным эффектом. С классической точки зрения туннельный эффект представляется абсурдным, так как частица в туннеле должна была бы обладать отрицательной кинетической энергией . Однако туннельный эффект – явление специфически квантовое. В квантовой же механике деление полной энергии на кинетическую и потенциальную не имеет смысла, так как противоречит соотношению неопределенностей. Поверхность металла является потенциальным барьером, который электроны преодолевают на глубину и возвращаются обратно.
Дата добавления: 2014-01-13; Просмотров: 504; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |