КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция: Особенности построения математических моделей
ГЛОССАРІЙ Свідомість – вищий рівень психічного відображення людиною дійсності, її представленість у вигляді узагальнених образів та понять. Самосвідомість – усвідомлюваність людиною самого себе, своїх власних якостей. Питання для самоконтролю: 1. Психологічна характеристика немовляти та раннього віку. 2. Психологічна характеристика дошкільного вису. 3. Психологічна характеристика підліткового Віку. 4. Психологічна характеристика раннього юнацького віку.
Рекомендована література: Спеціальна література: 1. Роменець В.А. Історія психології. – К.: Вища школа, Головн.вид-во, 1978. – 439с. 2. Ярошевський М.Г. История психологии. – М.: Мысль, 1985. – 575с. 3. Гиппенрейтер Ю.Б. Введение в общую психологию: Курс лекций. – М.: Изд-во Моск.ун-та, 1988. – 320с. 4. Дарвин Ч. Происхождение видов путем естественного отбора. – СПб: Наука 1991. – 539с. 5. Павлов И.П. Мозг и психика // Изб.психолг. тр. – М.; Воронеж: НПО „МОДЭК”,1996. – 320с. 6. Эльконин Д.Б. Введение в психологию развития. – М.: Тривола, 1994. – 120с.
Загальна література: 1. Варій М.Й., Козяр М.М., Коваль М.С. Військова психологія та педагогіка: посібник / За заг. ред. М.Й.Варія. – Львів: Вид-во “Сполом”, 2003. – 624 с. 2. Гамезо М.В., Домашенко И.А. Атлас по психологии: Информац.-метод. матер. к курсу «Общ.психология». – М.: Просвещение, 1986. – 272 с. 3. Загальна психологія: підручн. для студ. вищ. навч. закл./ за заг. ред. акад. С.Д.Максименка. – К.: Форум, 2000. 4. М’ясоїд П.А. Загальна психологія: Навч. посібн. – К.: Вища школа, 2001. – 487 с. 5. Немов Р.С. Психология: В 3 кнг. – М.: Владос, 1995. – Кн.1.- 576с.; Кн.2.-496с.; Кн.3. – 510с. 6. Психология. / Под ред. Рудика П.А. – М.: «Физкультара и спорт», 1974. – 512с. 7. Общая психология / Под ред. А.В.Петровского. – М.: Просвещение, 1986. – 464 с.
В лекции описан процесс построения математической модели. Приведен словесный алгоритм процесса.
Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.
Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.
Для построения математической модели необходимо: тщательно проанализировать реальный объект или процесс; выделить его наиболее существенные черты и свойства; определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта; описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций); выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций; определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.
Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает: построение алгоритма, моделирующего поведение объекта, процесса или системы; проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента; корректировка модели; использование модели.
Математическое описание исследуемых процессов и систем зависит от: природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д. требуемой достоверности и точности изучения и исследования реальных процессов и систем.
На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.
Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации, она является приближенным описанием объекта. Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.
Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.
Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола.
Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.
С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой. Для одного и того же стола мы можем принять либо модель прямоугольника, либо более сложную модель четырехугольника общего вида, либо четырехугольника с закругленными углами. Выбор той или иной модели определяется требованием точности. С повышением точности модель приходится усложнять, учитывая новые и новые особенности изучаемого объекта, процесса или системы.
Рассмотрим другой пример: исследование движения кривошипно-шатунного механизма (Рис. 2.1).
Рис. 2.1.
Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого: Заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями; Пользуясь этой схемой, мы выводим уравнение движения механизма; Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения 1-го и 2-го порядка.
Запишем эти уравнения:
где С0 – крайнее правое положение ползуна С:
r – радиус кривошипа AB;
l – длина шатуна BC;
фи – угол поворота кривошипа;
Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно-шатунного механизма, основанную на следующих упрощающих предположениях: нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун – это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма; при построении математической модели движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела – упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма; мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.
Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимую задачу.
Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.
Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.
Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.
Построение математической модели в прикладных задачах – один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель – значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, – определенной математической культурой, опытом исследования в своей области, знанием ЭВМ и программирования.
Дата добавления: 2014-01-14; Просмотров: 441; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |