Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритм поиска точностных характеристик и соответствующих им допусков 3 страница




Глинистые минералы. В формовочных песках встречается несколько глинистых минералов: каолинит, монтмориллонит, гидрослюды.

Все примеси в формовочных песках снижают его огнеупорность, физико-механические и технологические свойства, увеличивают пригар на отливках.

В связи с этим в последнее время все больше применяют обогащенные формовочные пески с минимальным содержанием примесей.

Лекция 8. Классификация формовочных песков

В соответствии с ГОСТ 2138–91 (табл.4.2 – 4.3) все формовочные пески, в зависимости от массовой доли глинистой составляющей (частиц глинистых материалов и обломков зерен кварца и других минералов размером менее 0,02 мм), подразделяют на кварцевые (К), тощие (Т) и жирные (Ж).

Кварцевые и тощие формовочные пески подразделяют на группы в зависимости от массовой доли глинистой составляющей, диоксида кремния, коэффициента однородности и среднего размера зерен, жирные – от предела прочности при сжатии во влажном состоянии и среднего размера зерна.

Кварцевые пески содержат до 2,0% глинистой составляющей. Тощие пески содержат от 2,0 до 12,0% глинистой составляющей. Жирные пески содержат от 12,0 до 50,0% глинистой составляющей. Обозначение марок кварцевых и тощих песков состоит из обозначений групп по массовой доле глинистой составляющей, массовой доле диоксида кремния, коэффициенту однородности и среднему размеру зерна.

 

Таблица4.2 Классификация формовочных песков (ГОСТ 2138 – 91)

  Группа * Содержание глины, мас. %, не более     Группа * SiO2, мас.%, не менее     Группа **   Коэффициент однородности, %     Группа *** Средний размер зерна, мм
  0,2   К1 99,0   О1 св. 80,0     до 0,14
  0,5   К2 98,0   О2 от 70,0 до 80,0     0,14-0,18
  1,0   К3 97,0   О3 от 60,0 до 70,0     0,19-0,23
  1,5   К4 95,0   О4 от 50,0 до 60,0     0,24-0,28
  2,0   К5 93,0   О5 до 50,0     св.0,28

* - группы кварцевых песков; ** - группа кварцевых и тощих песков; *** - группа кварцевых, тощих и жирных песков.

Таблица4.3 Классификация формовочных песков (ГОСТ 2138 – 91)

  Группа * Содержание глины, мас. %, не более     Группа * SiO2, мас.%, не менее     Группа ** Предел прочности при сжатии во влажном состоянии,МПа
  4,0   Т1 96,0   Ж1 св. 0,08
  8,0   Т2 93,0   Ж2 от 0,05 до 0,08
  12,0   Т3 90,0   Ж3 до 0,05

* - группы тощих песков; ** - группа жирных песков.

Обозначение марок кварцевых и тощих песков состоит из обозначений групп по массовой доле глинистой составляющей, массовой доле диоксида кремния, коэффициенту однородности и среднему размеру зерна.

Примеры.

2О3025 – кварцевый формовочный песок с массовой долей глинистой составляющей

до 0,2%, массовой долей диоксида кремния не менее 98,0%, коэффициентом однородности

от 60,0 до 70,0% и средним размером зерна от 0,24 до 0,28 мм.

2О4016 – тощий формовочный песок с массовой долей глинистой составляющей от 0,2 до 0,5%, массовой долей диоксида кремния не менее 93,0%, коэффициентом однородности от 50,0 до 60,0% и средним размером зерна от 0,14 до 0,18 мм.

Обозначение марок жирных песков состоит из обозначений групп по пределу прочности при сжатии во влажном состоянии и среднему размеру зерна.

Пример.

Ж102 – жирный формовочный песок с пределом прочности при сжатии во влажном состоянии свыше 0,08 МПа и средним размером зерна от 0,19 – 0,23 мм.

По массовой доле влаги, концентрации водородных ионов водной вытяжки (pH), массовой доле вредных примесей и форме зерен кварцевые пески подразделяют на группы, указанные в табл. 4.4. Коэффициент угловатости определяет степень отклонения формы зерен от сферической, выражается отношением теоретической удельной поверхности к действительной. Теоретическую удельную поверхность песков (м2/кг) определяют по данным ситового анализа на основе предположения, что все зерна имеют круглую форму. Действительная удельная поверхность является важной характеристикой многих формовочных материалов, дающей возможность определить коэффициент угловатости, а также иметь представление о дисперсности материала, что в случае сухих связующих, например, цемента, определяет их активность, расход воды и жидких связующих для получения оптимальных свойств смесей. На практике наиболее распространен метод определения удельной поверхности, основанный на соотношении между удельной поверхностью, пористостью, объемным весом и воздухопроницаемостью дисперсного материала. Более точный метод оценки удельной поверхности основан на определении объема газа, абсорбированного дисперсным материалом при условии образования молекулярного слоя.

По теоретической удельной поверхности и потерям при прокаливании кварцевые и тощие пески подразделяют на группы, указанные в табл. 4.5.

 

Таблица4.4 Требования к формовочным пескам (ГОСТ 2138 – 91)

  Пески Массовая доля влаги, % не более     Пески   рН     Форма зёрен песка   Коэффициент угловатости, ед.,не более
  Сухие   0,5     Кислые   до 6,2     Округлая   1,10
  Влажные   4,0     Нейтральные   от 6,2 до 7,0     Полуокруглая   1,25
  Сырые   6,0     Щелочные   св. 7,0     Угловатая   1,40

 

Массовая доля сульфидной серы в кварцевых формовочных песках не должна превышать 0,05% (определяют при геологической разведке новых месторождений). Формовочные пески не должны иметь посторонних включений: агломератов кварцитов и кварцевых песчаников, остатков растительных слоев, угля, торфа, известняка.

 

4.6.2. Высокоогнеупорные формовочные материалы

Для получения крупных чугунных и стальных отливок с чистой поверхностью вместо кварцевых песков применяют другие высокоогнеупорные материалы: хромит, хромомагнезит, циркон, дистен-силлиманит, шамот и др. Эти материалы имеют более высокие теплофизические свойства и меньшую склонность к физико-химическому взаимодействию с железом и его оксидами, поэтому позволяют получать чугунные и стальные отливки с более чистой поверхностью.

 

Таблица4.5 Требования к формовочным пескам (ГОСТ 2138 – 91)

 

    Удельная поверхность, м2/Па.с, не менее         Потери массы при прокаливании, %, не более
  Высокая       Низкие   0,2
  Средняя       Средние   1,0
  Низкая       Высокие   3,0

 

 

Поскольку эти материалы по сравнению с кварцем имеют более высокую теплопроводность, длительность контакта жидкого металла с формой при их применении снижается.

Хромит, или хромистый железняк – природный материал, содержащий хромшпинелиды. Химическая формула основного минерала в хромите FeO·Cr2O3, в котором содержится 68% Cr2O3 и 32% FeО. Однако из-за наличия примесей содержание Cr2O3 в хромите намного меньше. Минимальное содержание Cr2O3 в хромите 36%. К особенно вредной примеси в хромите относится CаСO3, который при нагревании разлагается с выделением CO2, что может вызывать образование газовых дефектов. Поэтому содержание СаО в хромите допускается не более 1,5%, содержание SiO2 – не более 7%, постоянно присутствующих примесей (п.п.п.) – не более 2%. Соотношение Cr2O3:FeО в природном материале находится в пределах 2,7–5,0 (в зависимости от месторождения). Для уменьшения газовыделения (п. п. п.), особенно СО2, рекомендуется перед приготовлением формовочных смесей хромит прокаливать при температуре 900–1000°С. Температура плавления хромита (при содержании Cr2O3 до 40%) не превышает 1800°С, плотность – 3760–4280 кг/м3. Хромит имеет более низкий температурный коэффициент объемного расширения, чем кварц. Хромит применяется для приготовления облицовочных смесей (или паст), при производстве крупных стальных и чугунных отливок. Полагают, что при применении хромита отливки с чистой поверхностью получаются в результате его спекания с последующим закрытием пор при нагреве поверхности формы заливаемым и залитым металлом.

Магнезит – горная порода, содержащая минерал МgСО3. Чистый МgСО3 имеет цвет от коричневого до светло-серого, плотность 2900 кг/м3. В горных породах наряду с минералом МgСО3 содержатся соединения кальция, кремния и железа. При переработке магнезитовой породы путем обжига из нее удаляется CO2, а магнезит превращается в оксид магния MgO кристаллизующийся как минерал периклаз. Оксид магния имеет свойства, подобные извести, т. е. поглощает влагу из воздуха и гидратируется. Поэтому его обжигают до спекания при температуре свыше 1400°С с добавками оксидов железа. В результате получают металлургический магнезит, имеющий шоколадно-коричневый цвет и содержащий более 85% MgO – основного жаростойкого компонента. Если обжиг происходит при температуре 800–950°С, образуется обезуглероженный каустический магнезит, обладающий вяжущими свойствами. Чистый MgО имеет огнеупорность 2800°С, а магнезитовые изделия – более 2000°C.

Зернистый материал для формовочных смесей получают дроблением отходов и боя магнезитовых изделий. Магнезит рекомендуется применять для приготовления облицовочных смесей или противопригарных красок, при получении отливок из высокомарганцовистых и других высоколегированных сталей.

Хромомагнезит представляет собой продукт обжига при температуре 1500–1600°С смеси, состоящей из 50–70% хромитовой руды и 30–50% металлургического магнезита. Хромомагнезит содержит 40–58% MgО и 16–27% Cr2O3. Огнеупорность его – не менее 2000°С, плотность – 3900 кг/м3. В отличие от магнезита хромомагнезит хорошо противостоит резким изменениям температуры.

В литейном производстве обычно применяются отходы и бой хромомагнезитового кирпича. Хромомагнезит используется для приготовления облицовочных смесей, паст и красок, при получении крупного стального литья из легированных сталей. Для приготовления облицовочных смесей используют размолотый хромомагнезит, имеющий остатки на ситах 1–016–50...60%, а на ситах 01–005 – 40...50%; для паст – остаток на ситах 04–016 – 30...40 %, а на ситах 01–005 и в тазике – 60...70%; для красок – остаток на сите 005–90%, остальное – остатки на ситах 01–0063.

Циркон – природный минерал, химическая формула ZrO2⋅SiO2. В природных цирконовых песках кроме циркона содержатся и другие минералы: кварц, рутил, дистен, ильменит, оксиды железа.

С целью увеличения содержания циркона цирконовые пески обогащают до получения так называемого цирконового (обезжелезенного) концентрата, в котором содержится не менее 65% ZrО2 и не более 0,5% ТiО2, 0,1% Fe2О3, 0,1% Al2О3, 0,15% P2О5.

Циркон имеет высокую огнеупорность – не ниже 1600°С (при допустимом содержании примесей), малый температурный коэффициент объемного расширения (0,003), высокие плотность (4600 – 4700 кг/м3) и теплопроводность. Он применяется в основном для приготовления противопригарных красок для стального литья, иногда для изготовления форм при литье по выплавляемым моделям и в оболочковые формы.

Оливин представляет собой изоморфную смесь форстерита и фаялита. Химическая формула его MgО·FeО·SiО2 (MgО – 23%, FeO – 42 и SiO2 – 35%). Температура плавления форстерита MgО·SiО2 – 1900°С, фаялита – 2FeO·SiO2 – 1200°С. Температура плавления оливина зависит от соотношения содержания оксидов магния, железа и содержания кварца. Поэтому оливин необходимо применять с минимальным содержанием оксидов железа и не смешивать с кварцевым песком. Нежелательной примесью в оливине является серпентин 3MgO·2SiО2·2Н2О.

Горные породы, содержащие свыше 80% оливина, называют оливинитами, а породы, содержащие 60–80% оливина, – дунитами. Оливин применяют для облицовочных формовочных смесей при изготовлении крупных стальных и чугунных отливок, что позволяет получать их с более чистой поверхностью, чем при использовании кварцевого песка. Кроме того, использование оливина, в отличие от кварца, не вызывает заболевания рабочих силикозом.

Дистен-силлиманит содержит дистен и силлиманит, являющиеся модификациями одного и того же вещества (формула Аl2O3·SiO2), но имеющие различную кристаллическую структуру. Структура дистена не претерпевает изменений при нагреве до 1300°С, а силлиманита – до 1545°С. Плотность дистен-силлиманита 3200–3500 кг/м3. Химический состав дистен-силлиманитового концентрата следующий, %: не менее 57 Аl2O3, не менее 39 SiO2, не более 1,0 TiO2, не более 0,8 Fe2О3, не более 0,2 СаО, не более 0,2 Na2О + К2О, 0,4 MgО и 1 – 2 ZrО2.

Дистен-силлиманит применяется в противопригарных красках для стального литья.

Шамот получают путем обжига огнеупорной глины до спекания.

Химический состав шамота различный и зависит от соотношения SiO2 и Аl2О3. Чем больше в шамоте содержание Аl2О3, тем выше егоогнеупорность. Шамоты бывают кислые (SiО22О3 > 4), нормальные (SiО2:А12О3 = 2...4), глиноземистые (SiО2:Аl2O3 < 2).

Чистый Аl2O3 (корунд) имеет температуру плавления (2047±8)°С, а шамот (в зависимости от класса) – 1580–1750°С.

Химический состав шамота, %: 30–45 А12О3; 54–70 SiO2; 4–7 ТiO2, Fе2О3, СаО, MgО, K2O, Na2O. Основным преимуществом шамота по сравнению с кварцевым песком является малое тепловое расширение, поэтому на отливах не образуется таких дефектов, как ужимины. Шамот дороже кварцевых песков. Он иногда применяется для изготовления форм многократного использования несложной конфигурации и при формовке по сухому для изготовления средних и крупных стальных и чугунных отливок.

В литейных цехах из других алюмосодержащих материалов применяются муллит и корунд. Корунд Аl2О3 – минерал синего цвета (сапфир) плотностью 4000 кг/м3. В технике применяется синтетический корунд, получаемый плавлением боксита или чистых глин, богатых оксидом алюминия. Для ускорения обжига применяют добавки 1–2 % TiO2, который образует с корундом твердый раствор и ускоряет рост кристаллов корунда.

Синтетический корунд содержит до 95% Аl2О3 и характеризуется наилучшими свойствами: огнеупорностью, термостойкостью при резких изменениях температуры, химической стойкостью и отсутствием объемных изменений. Чистый Аl2О3 применяется для изготовления форм при литье по выплавляемым моделям и в качестве наполнителя противопригарных красок для стального литья.

Муллит 3Аl2О3 · 2SiО2 – высокоогнеупорный материал, получаемый путем сплавления каолина с корундом, применяется для изготовления форм при литье по выплавляемым моделям. В ряде случаев применяют и другие высокоогнеупорные наполнители формовочных смесей и противопригарных красок – рутил ТiО2, графит, шунгит. Рекомендации по применению свежих формовочных песков. С учетом содержания вредных примесей, понижающих огнеупорность и противопригарную способность смесей, рекомендуется применять пески следующих групп: для крупного стального литья – 1К1–2, для среднего и мелкого стального, а также для крупного и среднего чугунного литья – 2К1–3, для среднего и мелкого чугунного литья, а также для всего цветного литья – 3К1–4, для мелкого несложного чугунного и всего цветного литья – 4К1–5.

Тощие и жирные пески применяют для изготовления песчано-глинистых формовочных смесей для мелкого литья из чугуна и цветных сплавов. Для стального литья жирные пески не рекомендуются, так как в них содержится большое количество вредных примесей.

С учетом зерновой структуры грубые пески группы 063 в литейном производстве не применяются, так как они образуют шероховатую поверхность отливок. Очень крупный и крупный песок групп 04 и 0315 используется при получении чугунных и стальных отливок массой свыше 1000 кг. Средний песок группы 02 рекомендуется для мелкого и среднего литья из чугуна и стали. Мелкий и очень мелкий пески групп 016 и 01 применяются при изготовлении тонкостенных чугунных и стальных отливок, а также отливок из цветных сплавов. Тощий песок группы 0063 применяется при производстве индивидуальных поршневых колец и других тонкостенных отливок. Обогащенные пески с низким содержанием глинистой составляющей (до 1,0%) рекомендуется использовать для изготовления форм и стержней по холодной и горячей оснасткам, из самотвердеющих смесей и прессованием под высоким давлением. Наиболее эффективными методами улучшения качества песков являются: гидравлическая обработка песка при высокотемпературной сушке, гидравлическая обработка с оттиркой и термическая обработка. Термическая обработка песка при высокотемпературной сушке (700–850оС) в специальных установках с “кипящим слоем” при вихревом потоке горячего газа позволяет снизить способность кварцевого песка к расширению и растрескиванию. Кварцевый песок остается основным формовочным материалом во всех странах, несмотря на наличие месторождений оливинового, хромитового и других материалов. Использование высококачественных классифицированных кварцевых песков имеет технико-экономические преимущества. В отдельных случаях при индивидуальном и мелкосерийном производстве отливок целесообразна замена кварцевых песков некварцевыми. Так, например, смеси на основе хромитовых песков при литье стали дают возможность устранить механический пригар и улучшить качество поверхности отливок. Загрязнение хромитового песка кварцевым недопустимо из-за образования при высокой температуре жидкой фазы, которая ухудшает противопригарные свойства смеси.

Формы для крупных отливок необходимо окрашивать. Эффективная регенерация хромитовой смеси достигается в специальной камере с последующей сушкой, воздушной и магнитной сепарацией.

Применение хромита в совокупности с бентонитом для чугунного литья обеспечивает получение чистой поверхности отливок без добавки в смесь каменноугольной пыли.

 

Лекция 9. 4.6.3. Формовочные глины

Происхождение глин

Литейными формовочными глинами называются горные породы, состоящие в основном из тонкодисперсных частиц, водных алюмосиликатов, обладающих связующей способностью и термохимической устойчивостью, достаточной для того, чтобы в определенных условиях образовывать прочные и не пригорающие к отливке формовочные смеси.

По своему происхождению глины подразделяются на первичные и вторичные. Первичные – остаточные глины разложения – образовались в результате разложения кристаллических горных пород или выпадения из водных растворов, содержащих глинозем и кремнезем, и остались на месте образования. Вторичные глины образовались путем выпадения из водных растворов и перенесения с места своего образования в районы залегания. Состав глин, образовавшихся в результате разрушения горных пород, зависит от пород и степени кислотности или щелочности, характеризуемой концентрацией водородных ионов (рН). В кислой среде (рН<7) образуются каолинитовые, в щелочной (рН>7) – монтмориллонитовые глины.

Формовочные глины являются минеральным связующим в формовочных смесях.

Минералогический состав формовочных глин

Минералогический состав глин определяют с помощью рентгенографического и электронно-микроскопического методов анализа.

Глины состоят из одного или нескольких минералов, содержащих Al2O3, зерен кварца и небольшой примеси некоторых других минералов, не содержащих глинозема. По содержанию основных глинистых минералов формовочные глины делятся на каолинитовые, каолинитогидрослюдистые и бентонитовые. К первой группе относятся глины, содержащие в основном минерал каолинит Al2O3·2SiO2·2H2O, его плотность 2,580–2,600 кг/м3, температура плавления 1750–1787°С. При нагреве каолинит претерпевает превращения: при 100–140°С удаляется гигроскопическая вода, при 400–700°С теряется конституционная (химически связанная) вода и наблюдается эндотермический эффект. Каолинит переходит в метакаолинит (Al2O3·2SiO2), и глина теряет связующую способность.

При 900–1050°С метакаолинит распадается на смесь аморфных Al2O3 и SiO2. При 1200–1280°С из свободного глинозема и кремнезема образуется минерал 3Al2O3⋅2SiO2 (муллит), что сопровождается также эндотермическим эффектом.

Каолинитовые глины находят широкое применение в литейном производстве и особенно для отливок стальных и чугунных деталей.

Каолинитогидрослюдные глины представляют собой промежуточные продукты разложения от слюд к каолиниту. По своему химическому составу и физическому состоянию эти минералы непостоянны. Химический состав слюд К2О⋅3Al2O3⋅6SiO2⋅2H2O с температурой плавления 1150–1400°С.

В зависимости от содержания Н2О некоторые слюды относятся к гидрослюдам и очень часто составляют значительный процент (до 30%) каолинитовых глин.

Основой бентонитовых глин является минерал монтмориллонит Al2O3⋅4SiO2⋅H2O⋅nH2O. В нем возможна замена некоторой части Al3+на Mg2+, а Si4+ – на Al3+.

Особенностью монтмориллонита является способность расширяться в направлении одной из кристаллографических осей. Эти свойства позволяют проникать ионам Н+ и ОН– внутрь кристаллической решетки, что ведет к увеличению набухания глины. Температура плавления монтмориллонита – 1250 –1300°С. Он способен отдавать или поглощать влагу из воздуха. При нагревании до 100 – 150°С из него удаляется гигроскопическая, а также межслойная вода (Н2О); при 600°С он теряет способность набухать в воде. При температуре 735–900°С происходит разрушение кристаллической решетки монтмориллонита и превращение его в аморфное вещество. В глинах обычно присутствует кварц (SiO2), от нескольких долей до 50%; являясь инертным материалом, он снижает связующую способность, пластичность, усадку и увеличивает газопроницаемость.

Кроме того, в глинах присутствуют гидраты оксидов железа, карбонаты в виде кальцита, магнезита, доломита, сидерита, гипса, которые являются вредными примесями.

Структура глин

Структура глинистых минералов имеет сложное слоистое строение. Глинистые минералы состоят из октаэдрических образований в виде пластинок толщиной 5⋅1010м. Элементом октаэдрического образования является октаэдр, состоящий из атомов кислорода и гидроксилов. Внутри октаэдра расположен атом алюминия или магния (рис. 4.21, а). Элементом тетраэдрического образования является тетраэдр, состоящий из атомов кислорода. Внутри тетраэдра расположены атомы кремния (см. рис. 4.21, б).

Рисунок 4.21 – Схема кристаллических решеток глинистых минералов:

а – октаэдр; б – тетраэдр; в – решетка каолинита; г – решетка монтмориллонита

Кристаллическая решетка минерала каолинита состоит из двух слоев: алюмогидроксильного и кремнекислородного, образующих так называемый “пакет” (см. рис. 4.21, в). Ввиду того, что отдельные пакеты каолиновой глины соприкасаются плоскостями различных атомов (кислорода и гидроксилов), они образуют достаточно прочную, так называемую водородную связь. При увлажнении каолиновой глины такие пакеты плохо расщепляются и слабо диспергируют.

Это объясняется тем, что межпакетное расстояние каолиновой глины составляет около 2⋅1010м, а радиус молекул воды – 1,45⋅10-10м, вследствие чего проникновение в межпакетный зазор и расщепление пакета затруднено.

Кристаллическая решетка минерала монтмориллонита состоит из трех слоев: двух кремнекислородных и одного гидроксильного (рис. 4.21, г). Так как отдельные пакеты монтмориллонитовой глины соприкасаются плоскостями с одноименными атомами, связь между ними возникает непрочная (валентная). При увлажнении такой глины молекула воды легко проникает в межпакетный зазор, увеличивая его до 20⋅1010м. Этим и объясняют высокую диспергирующую и связующую способность монтмориллонитовых глин.

Рисунок 4.22 – Схема глинистой мицеллы:

а – адсорбционный слой; б – диффузный слой; в – сольватная оболочка

(двойной электрический слой); 1 – ядро (глинистая частичка); 2 – ионы;

3 – противоионы; 4 – подвижные противоионы.

При смешивании глин с водой в глинистых суспензиях образуется коллоидный раствор. В таком растворе вокруг глинистого минерала имеются ионы адсорбированного и диффузионного слоев мицелл (коллоидных частиц) (рис. 4.22), которые могут замещаться ионами другого элемента, имеющего тот же знак заряда. К обменным ионам в глинах относятся ионы К+, Na+, Mg2+, Ca2+. При обмене одних ионов на другие свойства глин изменяются. При замене ионов Са2+ ионами Na+ (при обработке глин содой) связующие свойства глин повышаются.

Способность глин к ионному обмену измеряется в миллиэквивалентах на 100 г глины.

Классификация глин

В соответствии с ГОСТ 3226–93 и ГОСТ 28177–89 формовочные глины делятся в зависимости от минералогического состава на каолинитовые, каолинитогидрослюдистые и бентонитовые. Каолинитовые и каолинитогидрослюдистые глины делятся на марки в зависимости от предела прочности во влажном состоянии.

Бентонитовые глины делятся на три группы по пределу прочности при разрыве в зоне конденсации, а каолинитовые и каолинитогидрослюдистые – по пределу прочности при сжатии в сухом состоянии.

Марки бентонитовой глины:

Предел прочности при сжатии во влажном состоянии, Па (кгс/см2), не менее:

П (прочная) 8,826⋅104 (0,9); С (среднепрочная) 6,865⋅104 (0,7); М (малопрочная) 4,903⋅104 (0,5).

Предел прочности при разрыве в зоне конденсации влаги Па,(кгс/см2), не менее:

1 (высокосвязующая) 0,275⋅104 (0,028); 2 (связующая) 0,196⋅104 (0,020); 3 (среднесвязующая) 0,147⋅104 (0,015); 4 (малосвязующая) меньше 0,147⋅104 (0,015).

По термической устойчивости бентонитовые формовочные глины делятся на три марки: Т1– высокоустойчивые (0,6 единицы); Т2 – среднеустойчивые (0,3 единицы) и Т3 – низкоустойчивые (не нормируются).




Поделиться с друзьями:


Дата добавления: 2014-01-14; Просмотров: 795; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.07 сек.