Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Детекторы в газовой хроматографии. 1 страница




Принципиальная схема атомно-абсорбционного спектрометра

Атомно-абсорбционный анализ (атомно-абсорбционная спектрометрия), метод количественного элементного анализа по атомным спектрам поглощения (абсорбции).

Через слой атомных паров пробы, получаемых с помощью атомизатора (см. ниже), пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетические состояния. Этим переходам в атомных спектрах соответствуют т. наз. резонансные линии, характерные для данного элемента. Согласно закону Бугера-Ламберта-Бера, мерой концентрации элемента служит оптическая плотность A = lg(I0/I), где I0 и I-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой.

Принципиальная схема пламенного атомно-абсорбционного спектрометра: 1-источник излучения; 2-пламя; 3-монохроматор; 4-фотоумножитель; 5-регистрирующий или показывающий прибор.

Приборы для атомно-абсорбционного анализа - атомно-абсорбционные спектрометры - прецизионные высокоавтоматизированные устройства, обеспечивающие воспроизводимость условий измерений, автоматическое введение проб и регистрацию результатов измерения. В некоторые модели встроены микроЭВМ. В качестве примера на рисунке приведена схема одного из спектрометров. Источником линейчатого излучения в спектрометрах чаще всего служат одноэлементные лампы с полым катодом, заполняемые неоном. Для определения некоторых легколетучих элементов (Cd, Zn,Se, Те и др.) удобнее пользоваться высокочастотными безэлектродными лампами.

Перевод анализируемого объекта в атомизированное состояние и формирование поглощающего слоя пара определенной и воспроизводимой формы осуществляется в атомизаторе - обычно в пламени или трубчатой печи. Наиболее часто используют пламя смесей ацетилена с воздухом (макс. температура 2000°С) и ацетилена с N2O (2700°С). Горелку со щелевидным соплом длиной 50-100 мм и шириной 0,5-0,8 мм устанавливают вдоль оптической оси прибора для увеличения длины поглощающего слоя.

Трубчатые печи сопротивления изготавливают чаще всего из плотных сортов графита. Для исключения диффузии паров через стенки и увеличения долговечности графитовые трубки покрывают слоем газонепроницаемого пироуглерода. Максимальная температура нагрева достигает 3000 °С. Менее распространены тонкостенные трубчатые печи из тугоплавких металлов (W, Та, Мо), кварца с нихромовым нагревателем.

Для защиты графитовых и металлических печей от обгорания на воздухе их помещают в полугерметичные или герметичные камеры, через которые продувают инертный газ (Аr, N2).

Введение проб в поглощающую зону пламени или печи осуществляют разными приемами. Растворы распыляют (обычно в пламя) с помощью пневматических распылителей, реже - ультразвуковых. Первые проще и стабильнее в работе, хотя уступают последним в степени дисперсности образующегося аэрозоля. Лишь 5-15% наиболее мелких капель аэрозоля поступает в пламя, а остальная часть отсеивается в смесительной камере и выводится в сток. Максимальная концентрация твердого вещества в растворе обычно не превышает 1%. В противном случае происходит интенсивное отложение солей в сопле горелки.

Термическое испарение сухих остатков растворов - основной способ введения проб в трубчатые печи. При этом чаще всего пробы испаряют с внутренней поверхности печи; раствор пробы (объемом 5-50 мкл) вводят с помощью микропипетки через дозировочное отверстие в стенке трубки и высушивают при 100°С. Однако пробы испаряются со стенок при непрерывном возрастании температуры поглощающего слоя, что обусловливает нестабильность результатов. Чтобы обеспечить постоянство температуры печи в момент испарения, пробу вводят в предварительно нагретую печь, используя угольный электрод (графитовую кювету) графитовый тигель (печь Вудриффа), металлический или графитовый зонд. Пробу можно испарять с платформы (графитового корытца), которую устанавливают в центре печи под дозировочным отверстием. В результате значительного отставания температуры платформы от температуры печи, нагреваемой со скоростью около 2000 К/с, испарение происходит при достижении печью практически постоянной температуры.

Для введения в пламя твердых веществ или сухих остатков растворов используют стержни, нити, лодочки, тигли из графита или тугоплавких металлов, помещаемые ниже оптической оси прибора, так что пары пробы поступают в поглощающую зону с потоком газав пламени. Графитовые испарители в ряде случаев дополнительно подогревают электрическим током. Для исключения механических потерь порошкообразных проб в процессе нагрева применяются испарители типа цилиндрических капсул, изготовленные из пористых сортов графита.

Иногда растворы проб подвергают в реакционном сосуде обработке в присутствии восстановителей, чаще всего NaBH4. При этом Hg, например, отгоняется в элементном виде, As, Sb, Bi и других - в виде гидридов, которые вносятся в атомизатор потоком инертного газ.. Для монохроматизации излучения используют призмы или дифракционные решетки; при этом достигают разрешения от 0,04 до 0,4 нм.

При атомно-абсорбционном анализе необходимо исключить наложение излучения атомизатора на излучение источника света, учесть возможное изменение яркости последнего, спектральные помехи в атомизаторе, вызванные частичным рассеянием и поглощением света твердыми частицами и молекулами посторонних компонентов пробы. Для этого пользуются различными приемами, например модулируют излучение источника с частотой, на которую настраивают приемно-регистрирующее устройство, применяют двухлучевую схему или оптическую схему с двумя источниками света (с дискретным и непрерывным спектрами). Наиболее эффективна схема, основанная на зеемановском расщеплении и поляризации спектральных линий в атомизаторе. В этом случае через поглощающий слой пропускают свет, поляризованный перпендикулярно магнитному полю, что позволяет учесть неселективные спектральные помехи, достигающие значений А = 2, при измерении сигналов, которые в сотни раз слабее.

Достоинства атомно-абсорбционного анализа - простота, высокая селективность и малое влияние состава пробы на результаты анализа. Ограничения метода – невозможность одновременного определения нескольких элементов при использовании линейчатых источников излучения и, как правило, необходимость переведения проб в раствор.

Fтомно-абсорбционный анализ применяют для определения около 70 элементов (главным образом металлов). Не определяют газ. и некоторые другие неметаллы, резонансные линии которых лежат в вакуумной области спектра (длина волны меньше 190 нм). С применением графитовой печи невозможно определять Hf, Nb, Та, W и Zr, образующие с углеродом труднолетучие карбиды. Пределы обнаружения большинства элементов в растворах при атомизации в пламени 1-100мкг/л, в графитовой печи в 100-1000 раз ниже. Абсолютные пределы обнаружения в последнем случае составляют 0,1-100 пг. Относительное стандартное отклонение в оптимальных условиях измерений достигает 0,2-0,5% для пламени и 0,5-1,0% для печи. В автоматическом режиме работы пламенный спектрометр позволяет анализировать до 500 проб в час, а спектрометр с графитовой печью-до 30 проб. Оба варианта часто используют в сочетании с предварительным разделением и концентрированием экстракцией, дистилляцией, ионным обменом, хроматографией, что в ряде случаев позволяет косвенно определять некоторые неметаллы и органические соединения.

Методы атомно-абсорбционного анализа применяют также для измерения некоторых физических и физико-химических величин - коэффициент диффузии атомов в газах, температур газовой среды, теплот испарения элементов и др.; для изучения спектров молекул, исследования процессов, связанных с испарением и диссоциацией соединений.


 

16.Принципы хроматографии — явления на границе фаз.


 

17. Газовая и газожидкостная хроматография.


 

18. Принципиальная схема газового хроматографа.

Принципиальная схема газового хроматографа: коротко о главном

О газовых хроматографах написано немало – это один из наиболее распространенных методов хроматографии. Обычно также приводится само краткое описание метода и схема газового хроматографа: источник газа (подвижной фазы) с блоком подготовки (редуктором или дросселем), устройство ввода пробы в испаритель, термостатированные хроматографическая колонка и детектор, усилитель сигнала, компьютер и расходомер.
Источником подвижной фазы является баллон с инертным газом (гелием), азотом или водородом. Хроматографическая разделительная колонка – это обычно спираль или U-образные тонкие (0.1…1 мм) и длинные капилляры (до 100 м), выполненные из стекла, кварца, меди или нержавейки. Чем меньше диаметр, тем эффективнее работает колонка. Неподвижная фаза уже заранее нанесена на внутренние стенки капилляра.
Иногда используются достаточно примитивные насадочные (набивные) колонки: их диаметр порядка 2 мм, длина до 20 м и адсорбентом является рыхлая осадочная порода или молотый кирпич вперемешку с вазелиновым маслом.
Жидкую пробу в нее вводят в испаритель при повышенной температуре – чтобы она испарилась и смешалась с подвижной фазой.

Детектор (их 8 видов) – непрерывно мерит мгновенную концентрацию компонентов (на подвижную фазу он не реагирует) на выходе из колонки. Нужно сказать, что в газовой хроматографии используются детекторы только дифференциального типа (есть еще интегральный). Но и они подразделятся на потоковые и концентрационные. Причем первые разрушают молекулярные соединения пробы, а вторые - нет.

Вот, в принципе, и все устройство газового хроматографа – отличаются лишь навороты.


 

19. Детекторы в газовой хроматографии.

Детектор - это устройство, предназначенное для обнаружения в потоке газа-носителя анализируемых веществ по какому-либо физико-химическому свойству. Отклик осуществляется за счет преобразования свойств в электрический сигнал. Детекторы подразделяются на интегральные и дифференциальные. Интегральный детектор регистрирует изменение во времени суммарного количества выходящих из колонки компонентов. Хроматограмма представляет собой ряд ступеней. Из-за низкой чувствительности, большой инертности и недостаточной универсальности эти детекторы имеют ограниченное применение. Все серийно выпускаемые газохроматографические детекторы являются дифференциальными. Сигнал таких детекторов пропорционален мгновенному изменению значения какого-либо свойства газового потока, а его аналоговая запись имеет вид пика. Хроматограмма, полученная с таким детектором, представляет ряд пиков, причем количество каждого компонента пропорционально площади соответствующего пика.

В процессе детектирования химическая природа молекулы анализируемого вещества может изменяться или нет. Если природа молекулы изменяется (процесс разрушения молекулы), то она может быть зарегистрирована лишь однократно. Если же природа молекулы не изменяется, то такая молекула может быть зарегистрирована детектором многократно. Детекторы, в которых возможна многократная регистрация молекул, называются концентрационными, т.к. их сигнал пропорционален концентрации вещества в газе-носителе. Примером концентрационного детектора является детектор по теплопроводности (ДТП), в котором процесс отвода теплоты от чувствительных элементов не разрушает молекул анализируемых веществ. Детекторы, в которых возможна лишь однократная регистрация молекул, называются потоковыми, т.к. их сигнал пропорционален потоку вещества. В качестве типичного примера потокового детектора можно привести ионизационно-пламенный детектор (ДИП), в котором происходит сгорание органических веществ.

Исходя из цели анализа и условий его проведения, следует выбирать такой детектор, характеристики которого соответствуют им в наибольшей степени. Критерии оценки детекторов общеприняты для всех систем детектирования; к ним относятся:
- чувствительность;
- минимально детектируемая концентрация (предел обнаружения);
- фоновый сигнал;
- уровень шума;
- скорость дрейфа нулевой линии;
- диапазон линейности детектора;
- эффективный объем и время отклика (быстродействие);
- селективность.

Чувствительность отражает степень взаимодействия анализируемого вещества с детектором и определяет величину сигнала, соответствующего содержанию (концентрации и потоку) вещества в газе-носителе. На практике чувствительность чаще всего определяют по площади сигнала детектора в зависимости от типа детектора.

Применение микронасадочных и капиллярных колонок требует высокочувствительные детекторы (например, ДИП), а при работе с насадочными колонками - средней чувствительности (ДТП, детектор по плотности). Сигнал, который дает детектор хроматографа, работающего в каком-либо режиме, в отсутствие анализируемых веществ, называется фоновым. Графическим отражением фонового сигнала является нулевая линия, регистрируемая самописцем. Фоновый сигнал - это реакция детектора на состав газового потока, поступающего в детектор. Фоновый сигнал есть у каждого детектора, однако, нельзя измерить фоновый сигнал ДТП, т.к. его измерительная схема построена на разностном (компенсационном) принципе и на выходе детектора регистрируется результат сравнения сигналов двух линий. Из-за естественной нестабильности параметров хроматографического режима и воздействия на сигнал детектора различных помех, фоновый сигнал детектора проявляет различной степени нестабильность, что отражается на качестве нулевой линии.

Быстродействие (инерционность) - способность детектора быстро реагировать на резкое изменение концентрации вещества в потоке газа-носителя, проходящего через детектор. Искажение сигнала из-за инерционности проявляется сильнее при записи узких и высоких пиков, и практически отсутствуют при регистрации широких пиков. Инерционность является следствием ограниченной скорости физических или физико-химических процессов, определяющих механизм детектирования (например, для ДТП). По возможности обнаружения веществ детекторы подразделяются на универсальные и селективные.

Селективность - характеристика, определяющая сигнал детектора по отношению к различным соединениям. Селективные детекторы имеют повышенную чувствительность (как правило, не меньше, чем на порядок) к некоторым классам или группам соединений. Например детектор электронного захвата (ДЭЗ) избирательно регистрирует галоген- и азотсодержащие соединения, пламенно-фотометрический детектор ПФД - фосфор- и серосодержащие вещества).

Детектор электронного захвата (ДЭЗ)

Детектор электронного захвата является наиболее часто используемым селективным газохроматографическим детектором. ДЭЗ применяется для определения соединений, обладающих большим сродством к электронам. Эти вещества захватывают свободные тепловые электроны в камере с радиоактивным источником с образованием стабильных ионов. Он успешно применяется для определения малых концентраций галоген-, азот- и кислородсодержащих веществ.

Система детектирования по захвату электронов включает: ионизационную камеру (ячейку детектора) и источник поляризующего напряжения (блок питания). В ячейке детектора газ-носитель под воздействием β-излучения источника 63Ni ионизируется с образованием положительных ионов и свободных электронов. Условия электронного питания детектора таковы, что процесс ионизации частично обратим за счет протекания ион-электоронной рекомбинации.

При появлении в детекторе молекул анализируемого вещества, обладающего сродством к электрону, происходит захват электронов веществом с образованием отрицательных ионов. Подвижность массивных отрицательных ионов на 4?5 порядков меньше подвижности электронов, что приводит в ДЭЗ к замене электорон-ионной рекомбинации на ион-ионную. Скорость образования заряженных частиц определяется величиной равной сумме скоростей процессов рекомбинации и сбора зарядов на электродах детектора. Последняя величина определяет ток, регистрируемый во внешней цепи детектора электрометром. При постоянном напряжении питания детектора ток, протекающий через него, в результате захвата электронов электроноакцепторными веществами снижается, так как скорость рекомбинации возрастает. Чувствительность ДЭЗ определяется эффективностью захвата электрона и зависит от большого числа различных факторов: природы анализируемого вещества и газа-носителя, условия электрического и газового питания, чистоты газа, температуры детектора. При захвате электрона нейтральной молекулой с образованием отрицательного иона потенциальная энергия частицы уменьшается. Разность энергий нейтральной молекулы и соответствующего ей отрицательного иона называется сродством к электрону, а вещества, молекулы которых способны захватывать электроны - электроноакцепторами. Вероятность захвата электрона молекулой зависит от энергии электрона и природы молекулы, причем захват может осуществляться в процессах следующих типов:
- диссоциативный захват - захват электрона молекулой с образованием возбужденного иона и последующей его диссоциацией;
- захват электрона с образованием возбужденного иона и последующей потерей возбуждения при столкновении с третьей частицей;
- захват электрона при тройном столкновении;
- радиационный захват электрона нейтральным атомом.

Радиационный захват маловероятен и, как правило, не происходит. Вероятность захвата резко возрастает, если в процессе захвата принимает участие третья частица. Способность атомов или молекул выполнять роль третьей частицы зависит от того, могут ли они поглощать освобождающуюся при захвате электронов энергию. Благодаря большому числу внутренних степеней свободы молекулы эффективнее, чем атомы, и выполняют роль третьей частицы. Когда освобождающаяся при захвате энергия полностью идет на увеличение потенциальной энергии третьей частицы, наблюдается резонанс - резкое увеличение захвата электрона. Когда электрон захватывается молекулой, избыток энергии может идти на возбуждение электронных уровней молекулярного иона. Если эта энергия превосходит энергию диссоциации иона, то образующийся возбужденный ион диссоциирует на нейтральную частицу и отрицательный ион. Вероятность диссоциациативного захвата обычно сильно зависит от энергии электрона. Если освобождаются при захвате энергия (сумма кинетической энергии электрона и сродства молекулы к электрону) равна или больше энергии диссоциации, то захват происходит. Однако при больших энергиях электрона диссоциативный захват не происходит, поэтому зависимость вероятности диссоциативного захвата от энергии электрона имеет характер, близкий к резонансному. Энергия электрона, при которой наблюдается резонансное увеличение захвата, для разных веществ различна. Например, у соединений, легко диссоциирующих и имеющих большое сродство к электрону, вероятность захвата максимальна при практически нулевой энергии электрона. Если же энергия диссоциации велика, а сродство к электрону мало, вероятность диссоциативного захвата может быть большой лишь при значительных энергиях электронов. Таким образом, для детектирования большого числа веществ, обладающих различным сродством к электрону, необходимо обеспечить условия для наличия в детекторе электронов широкого спектра энергий. Особенно сильное влияние на энергию электронов оказывает природа газа-носителя.

Установлено, что использование в качестве газа-носителя азота и аргона более предпочтительно, однако можно применять и гелий, хотя чувствительность при этом, как правило, ниже. Именно в этих газах энергия электронов изменяется в широких пределах, что обеспечивает благоприятные условия для их захвата различными электроноакцепторными веществами. Природа газа-носителя влияет на чувствительность детектирования: во-первых, в разных газах при неизменных условиях хроматографирования различна энергия и подвижность электронов, а, следовательно, и вероятность захвата неодинакова. Во-вторых, в разных газах различна подвижность ионов, а, следовательно, и скорость процессов рекомбинации. В-третьих, радиоактивное излучение проникает в разных газах на различное расстояние, т.е. поглощение излучения и ионизация будут различны.

Нужная величина тока достигается конструкцией детектора: форма электродов и расстояние между ними, мощность радиоактивного источника, способ его размещения и т.д. Первоначально предложенные конструкции ДЭЗ работали в режиме постоянного напряжения питания. Зависимость чувствительности ДЭЗ от напряжения питания носит четко выраженный экстремальный характер. Максимум чувствительности соответствует напряжению питания, при котором фоновый ток составляет примерно 85% от тока насыщения детектора, т.е. в области перехода от тока проводимости к току насыщения. Чувствительность возрастает с увеличением активности источника, при этом максимум чувствительности может наблюдаться при близких степенях приближения к току насыщения. Следовательно, захват возрастает с увеличением энергии электронов и в детекторах с малой активностью источника детектирование таких веществ может не происходить. Ловелоком был предложен и получил широкое применение режим импульсного электрического питания. На чувствительность при этом сложным образом влияют амплитуда, длительность и период импульсов. При детектировании в режиме импульсного питания дополнительные требования предъявляют к газу-носителю. Необходимо, чтобы скорость дрейфа электронов была как можно более высокой и за короткий импульс можно было более полно осуществить их сбор. Для этого метода рекомендуется использовать аргон с добавлением 5?10% метана. Особое место среди методов электронно-захватного детектирования занимает детектирование при постоянной скорости рекомбинации.

Повышение температуры детектора приводит к уменьшению плотности газа, увеличению длины свободного пробега электронов и ионов, что облегчает сбор зарядов и увеличивает крутизну вольтамперной характеристики в области тока проводимости. В результате максимальная чувствительность, обеспечиваемая током детектора, равным 85% тока насыщения, при повышении температуры достигается при меньших напряжениях. Таким образом, при постоянном напряжении питания увеличение температуры ДЭЗ может приводить как к увеличению, так и к уменьшению чувствительности. Зависимость чувствительности ДЭЗ от температуры может иметь и экстремальный характер с максимум при температуре, для которой установленное напряжение питания является оптимальным. Аналогичные зависимости наблюдаются и при изменении расхода газа-носителя, хотя достаточно убедительные объяснения в литературе отсутствуют. Таким образом, при изменении любого из факторов, от которых зависит крутизна вольтамперной характеристики ДЭЗ на участке тока проводимости (температура, расход газа-носителя, его давление, состав), оптимальный режим работы ДЭЗ не сохраняется и его показания изменяются.

Как указывалось выше, в ионизационных детекторах в любой момент времени сумма скоростей образования, рекомбинации и сбора заряженных частиц равна нулю. Если ток через детектор искусственно поддерживать постоянным, то при постоянной скорости образования заряженных частиц скорость их рекомбинации неизбежно будет постоянной. Захват электронов электроноакцепторным веществом с образованием малоподвижных отрицательных ионов приводит к уменьшению электропроводности детектора (увеличению сопротивления) и поддержание тока детектора постоянным возможно лишь при соответствующем росте напряжения электрического поля, препятствующем увеличению скорости рекомбинации. В соответствии с принципом работы этот детектор получил название детектора постоянной скорости рекомбинации (ДПР).

Оба варианта детектора (ДЭЗ и ДПР) имеют общий механизм образования сигнала, при этом в классическом ДЭЗ фиксируется уменьшение тока при постоянном напряжении питания, а в ДПР - при постоянной величине тока через детектор измеряется увеличение напряжения на нем. Несмотря на общий механизм образования сигнала ДПР имеет перед ДЭЗ ряд существенных преимуществ:
1) Когда детектор работает в режиме постоянной скорости рекомбинации, отсутствует одна из важнейших причин ограничения линейности: зависимость чувствительности ДЭЗ от тока. При детектировании в режиме постоянного напряжения питания (ДЭЗ) с увеличением концентрации анализируемого вещества уменьшается ток и уменьшается чувствительность.
2) Гораздо меньшая восприимчивость показаний ДПР к изменению параметров его режима: температуры, давлению, скорости и состава газа-носителя. Это связано с тем, что независимо от условий опыта ДПР работает в режиме, близком к оптимальному, когда ток детектора составляет около 85% тока насыщения.

Фоновый сигнал ДПР является характеристикой, позволяющей оценивать состояние как детектора, так и всего хроматографа в целом. Величина фона ДПР определяется чистотой исходного газа-носителя, газовых линий хроматографа и свойствами НЖФ. Кислород повышает фон ДПР, при этом чувствительность детектора к различным веществам изменяется по-разному. Повышение содер- жания кислорода увеличивает чувствительность ДЭЗ к монохлоралканам, полициклическим ароматическим и другим углеводородам, дихлорметану и двуокиси углерода. В ДПР увеличение фона означает увеличение напряженности электрического поля, т.е. увеличение энергии электронов, что может привести к снижению чувствительности к полихлорированным углеводородам и к увеличению чувствительности к насыщенным углеводородам. В любом случае повышенное содержание кислорода приводит к увеличению уровня шума и снижению верхнего предела линейности детектора. Повышенное содержание воды практически не сказывается на величине фона ДПР, однако резко увеличивает уровень шума детектора и дрейф нулевой линии. Органические примеси, и в первую очередь масла, ухудшают стабильность нуля и величину фона и чувствительности детектора. Существенным недостатком ДЭЗ, а значит и ДПР является малый диапазон зависимости сигнала от концентрации вообще и очень узкий диапазон линейности в частности. Ограничение диапазона сверху связано прежде всего с самим механизмом детектирования. Очевидно, что сигнал вообще перестает изменяться, когда в детектор вводится столько вещества, что оно способно связывать больше электронов, чем образуется в ионизационной камере под воздействием радиоактивного источника. Причем, чем большую чувствительность имеет детектор к веществу, тем меньше диапазон линейности. Это объясняется относительно большим числом электронов, связываемых единицей массы вещества, обладающего большим сродством к электрону.

Пламенно-ионизационный детектор (ДИП, ПИД)

В основе ДИПа лежит зависимость электрической проводимости ионизированного газа от его состава. Сигналом детектора является изменение ионного тока, вызванное введением в детектор анализируемого вещества. Газ-носитель в смеси с анализируемой смесью и водородом подается в форсунку горелки, где происходит ионизация. Одновременно горелка выполняет функцию одного из электродов, а нержавеющая пластинка, свернутая в цилиндр, укрепленная на небольшом расстоянии над пламенем, образует второй — собирающий электрод. Детектор представляет собой камеру, в которой поддерживается водородное пламя, являющееся источником ионизации. В камеру вводятся необходимые для поддержания пламени водород и воздух: водород подается в детектор в смеси с газом-носителем через канал горелки, а воздух - через другой канал и распределяется равномерно диффузором. Горелка является одним из электродов, она изолирована от корпуса детектора и соединена с источником стабилизированного напряжения. Второй электрод, называемый коллектором, расположен над горелкой. Во внешнюю цепь электрода детектора включен электрометр, измеряющий ток между электродами детектора. Поскольку в пламени чистого водорода число ионов мало, сопротивление межэлектродного газового пространства очень велико и ток очень мал. Этот ток, возникающий за счет ионизации примесей, содержащихся в газе-носителе, водороде и воздухе, является постоянным фоновым током детектора. При внесении с газом-носителем из колонки анализируемых органических веществ число ионов в пламени резко увеличивается, сопротивление пламени падает и во внешней цепи детектора регистрируется соответствующее возрастание ионного тока. В нижней части зоны пламени (у среза горелки) происходит термическая деструкция органических молекул. Окисление продуктов деструкции сопровождается хемиионизацией, при которой энергия химической реакции окисления не распределяется в окружающей среде, нагревая ее, а направлена только на ионизацию. Основными носителями положительных зарядов в пламени являются ионы гидроксония, которые образуются при взаимодействии ионов СНО+ с водой. Именно ионы гидроксония обусловливают электрическую проводимость пламени. Однако примесь паров воды в газах, питающих детектор, снижает чувствительность ДИПа к органическим веществам. Такой эффект связан с уменьшением температуры пламени вследствие увеличения теплоемкости газа. Кроме того, в присутствии паров воды в пламени образуются малоподвижные гидратированные ионы гидроксония Н3О+·Н2О и Н3О+·2Н2О, из которых не все достигают коллекторного электрода.

Термоионный детектор (ДТИ, ТИД)

До настоящего времени ДТИ — это один из наиболее высокочувствительных и селективных детекторов к фосфорорганическим веществам. Кроме того, получили все большее распространение варианты термоионного детектора, проявляющие высокую чувствительность и селективность к азот- и галогенсодержащим веществам. Конструкции детекторов различаются главным образом способом размещения и нагревания соли щелочного металла, а также геометрией детектора, причем все эти различия оказывают весьма существенное влияние на его характеристики — стабильность, чувствительность, селективность. Щелочная соль в виде таблетки или нанесенная на какой-либо держатель, выполненный из пористого металла или керамики в виде спирали, сетки или петли, может нагреваться либо водородным пламенем, либо электрическим током. В качестве источника ионов щелочного металла пригодны почти все его соли и гидроксиды. Механизм образования сигнала в ДТИ изучен недостаточно не только для проведения каких-либо количественных сопоставлений, но и для качественного единообразного толкования отклика детектора на вещества различной природы. Вероятнее всего, что в рамках общего, весьма сложного механизма ионизации в пламени водорода в присутствии соединений щелочных и щелочноземельных металлов, регистрация веществ различной природы происходит по различным механизмам. Начальными стадиями процесса детектирования являются стадии испарения соли щелочного металла и ее термическая диссоциация с последующей ионизацией. Потенциалы ионизации щелочных и щелочноземельных металлов относительно невелики и находятся в пределах 3?6 эВ. Потенциалы ионизации органических веществ всегда выше (9?13 эВ), чем и объясняется низкая степень их ионизации в ДТИ с образованием положительных ионов. Поступающие в детектор органические вещества разрушаются и продукты их разрушения также могут ионизироваться. Степень ионизации продуктов разрушения большинства анализируемых веществ по этой реакции также невысока, как и по предыдущей.




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 2845; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.146 сек.