КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Часть V. Степень убежденности: изучение неопределенности 287 3 страница
Пусть столь прямолинейное утверждение режет слух, но торговля — взаимовыгодный процесс и оба партнера при этом становятся богаче. Какая радикальная идея! До этого момента богатство было преимущественно результатом эксплуатации или грабежа. Хотя европейцы продолжали разбойничать на море, дома накопление богатства стало доступным скорее многим, нежели избранным. Теперь богатели не наследные принцы и их фавориты, а люди крутые, проворные, предприимчивые, склонные к новаторству — большей частью предприниматели. Торговля — рискованное дело. Когда развитие ремесел и торговли изменило правила игры, определяющие процесс накопления богатства, неожиданным результатом этого стал капитализм, как воплощение деятельности в условиях риска. Но капитализм не смог бы достичь расцвета, если бы не два новых вида деятельности, без которых люди обходились, пока будущее считалось делом случая или воли Божьей. Первым был бухгалтерский учет — скромная работа, которая способствовала распространению новых методов учета и расчета. Вторым было прогнозирование — деятельность гораздо менее скромная и требующая гораздо большей активности, связанной с принятием рискованных решений, чреватых неожиданными результатами. Вы не возьметесь перевозить товары через океан, или закупать товары на продажу, или занимать деньги, не попытавшись перед этим узнать, что ждет вас впереди. Доставка в срок заказанных вами материалов, получение всех товаров, которые вы собираетесь продать, в соответствии с заказной спецификацией, установка вашего торгового оборудования — всё нужно спланировать и организовать до того момента, когда появится первый клиент и выложит деньги на прилавок. Успешное ведение бизнеса — это в первую очередь предвидение и только потом покупка, производство, маркетинг, оценка и организация продажи.
Люди, с которыми вы встретитесь в последующих главах, рассматривали открытия Паскаля и Ферма как начала мудрости, а не как решение интеллектуальной головоломки, возникшей на поприще азартных игр. Им хватило смелости энергично взяться за исследование многих аспектов риска, требующее решения проблем нарастающей сложности и огромной практической важности, и при этом осознать, что этот предмет связан с самыми фундаментальными аспектами человеческого существования. Но философия должна ненадолго отойти в сторонку, потому что история начнется с самого начала. Современные методы познания неведомого начинаются с измерения, с шансов, с вероятности. Числа пришли первыми. Но откуда они пришли?
Глава 2 Просто как I, II, III Без цифр не было бы ни шансов, ни вероятностей; без шансов и вероятностей идущему на риск остается надеяться только на Бога или судьбу. Без цифр риск — это просто нахрап. Мы живем в мире цифр и вычислений. Утром, едва продрав глаза, мы смотрим на часы, а потом считаем ложки кофе, засыпая его в кофеварку. Мы платим за квартиру, изучаем вчерашний курс акций, набираем телефон приятеля, проверяем, сколько осталось бензина в машине, следим за скоростью по спидометру, нажимаем на кнопку нужного этажа в лифте своей конторы и набираем цифры кодового замка на ее двери. И это только начало дня, который окончится отключением перед отходом ко сну телевизионного канала номер такой-то. Нам трудно представить себе время, когда не было цифр. Однако если мы постараемся представить себе хорошо образованного человека, скажем, 1000 года в современной обстановке, то заметим, что он наверняка не обратит внимания на цифру ноль и не сможет сдать арифметику за третий класс; его потомок 1500 года окажется не намного лучше.
История цифр на Западе началась в 1202 году, когда подходило к концу строительство Шартрского кафедрального собора и завершался третий год правления английского короля Джона. В этом году в Италии появилась книга, озаглавленная «Liber Abaci», или «Книга о счётах». Все ее пятнадцать глав были написаны от руки — ведь до изобретения книгопечатания оставалось почти триста лет. Ее автору Леонардо Пизано было всего двадцать семь лет, и он был очень удачливым человеком: его книга получила одобрение самого императора Священной Римской империи Фридриха П. О лучшем нельзя и мечтать1. Большую часть своей жизни Леонардо Пизано был известен как Фибоначчи, под этим именем он и вошел в историю. Его отца звали Боначио, а его — сын Боначио, т. е. Фибоначчи. Боначио означает 'простак', а фибоначчи — 'чурбан'. Однако Боначио, по-видимому, был не совсем простаком, поскольку он представлял Пизу в качестве консула во многих городах, а его сын Леонардо тем более не был чурбаном. Фибоначчи был подвигнут к написанию «Liber Abaci» во время визита в Багио, процветающий алжирский город, где его отец пребывал в качестве пизанского консула. Там он столкнулся с чудесами индо-арабской системы счисления, перенесенной арабскими математиками на Запад во время крестовых походов. Ознакомившись со всеми вычислениями, выполняемыми в рамках этой системы, которые даже не снились математикам, использовавшим римскую систему счисления, он постарался изучить ее как можно более досконально. Чтобы поучиться у арабских математиков, живших по берегам Средиземного моря, он предпринял путешествие в Египет, Сирию, Грецию, Сицилию и Прованс. В результате появилась книга, необычная со всех точек зрения. «Liber Abaci» открыла европейцам новый мир, в котором для представления чисел вместо букв, применяемых в еврейской, греческой и римской системах счисления, использовались цифры. Книга быстро привлекла внимание математиков как в Италии, так и по всей Европе. «Liber Abaci» — это далеко не букварь по чтению и написанию новых численных символов. Фибоначчи начинает с объяснения, как по количеству символов, представляющих число, определить, включает ли оно только единицы, или десятки, или сотни и так далее. В следующих главах рассматриваются более сложные вопросы. Здесь мы находим вычисления, использующие все виды чисел и дробей, правила пропорции, извлечение квадратных корней и корней высших степеней и даже решение линейных и квадратных уравнений. Каким бы остроумным и оригинальным ни было содержание книги Фибоначчи, она наверняка не смогла бы привлечь к себе много внимания за пределами узкого круга знатоков математики, если бы в ней излагались только теоретические вопросы. Огромный успех книги объяснялся тем, что Фибоначчи насытил ее примерами практического применения изложенных в ней методов. Там, в частности, описаны и проиллюстрированы примерами многие новшества, которые благодаря новой системе счисления удалось применить в бухгалтерских расчетах, таких, как представление размера прибыли, операций с обменом денег, конвертацией мер и весов и, хотя ростовщичество было еще запрещено во многих местах, исчисления процентных выплат. О том, насколько сильный ажиотаж вызвало появление книги Фибоначчи, можно судить по тому, что от нее пришел в восторг даже такой блистательный и творческий человек, каким был император Фридрих. Этот монарх, правивший с 1211-го по 1250 год, сочетал жестокость и властность с живым интересом к науке, искусству и философии государственного правления. В Сицилии он разрушил феодальные замки и упразднил их гарнизоны, обложил налогом и отрешил от управления государством духовенство, устранил все ограничения, препятствующие импорту, и отменил государственную монополию. Фридрих не терпел никакого противодействия. В отличие от своего деда Фридриха Барбароссы, который был унижен папой в битве при Легнано в 1176 году, этот Фридрих, кажется, получал удовольствие от нескончаемых столкновений с папством. Его непреклонность принесла ему даже не одно, а два отлучения. Во втором случае папа Григорий IX объявил Фридриха лишенным императорской короны, назвав его еретиком, распутником и Антихристом. Фридрих ответил жестоким нападением на владения папы, а тем временем его флот задержал большую делегацию прелатов, направлявшихся в Рим для участия в соборе, который должен был лишить его императорской короны. Фридрих окружил себя ведущими интеллектуалами своего времени, пригласив многих из них к себе в Палермо. Он построил на Сицилии несколько великолепнейших замков и в 1224 году основал университет для подготовки государственных служащих — первый европейский университет, получивший устав от монарха. Фридрих был в восхищении от книги Фибоначчи. Как-то в 1220-х годах во время визита в Пизу он пожелал его увидеть. На аудиенции Фибоначчи решал алгебраические задачи, в том числе кубические уравнения, поочередно предлагаемые ему одним из многих придворных ученых. Это побудило его написать еще одну книгу — «Liber Quadratorum», или «Книгу о квадратах», которую он посвятил императору. Фибоначчи широко известен благодаря короткому отрывку из «Liber Abaci», содержание которого производит впечатление математического чуда. В отрывке обсуждается задача о том, сколько кроликов родится в течение года от одной пары кроликов в предположении, что каждый месяц каждая пара рождает другую пару и что кролики начинают рожать с двухмесячного возраста. Фибоначчи доказывает, что в этом случае потомство исходной пары к концу года достигнет 233 пар. Дальше он утверждает нечто еще более интересное. Предположим, что первая пара кроликов не будет размножаться до второго месяца. К четвертому месяцу начнут размножаться их первые двое отпрысков. Коль скоро процесс продолжится, числа пар в конце каждого месяца будут такими: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Здесь каждое последующее число является суммой двух предыдущих. Если кролики продолжат в том же духе в течение ста месяцев, число пар достигнет 354 224 848 179 261 915 075. Этим не исчерпываются изумительные свойства чисел Фибоначчи. Разделим каждое из них на следующее за ним. Начиная с 3, будем получать 0,625. После 89 ответ будет 0,618; с увеличением чисел в ответе будет возрастать лишь число десятичных знаков после запятой1'.(Одним из удивительных свойств этих чисел является то, что число 0,618 получается, если извлечь квадратный корень из 5, который равен 2,24, вычесть 1 и затем разделить на 2; это алгебраическое выражение входит в формулу, представляющую числа Фибоначчи). Разделим теперь каждое число, начиная с 2, на предыдущее. Будем получать 1,6. После 144 ответ будет всегда 1,618. Греки знали это соотношение и называли его золотой пропорцией. Эта величина определяет пропорции Пантеона, игральных карт и кредитных карточек и здания Генеральной Ассамблеи Организации Объединенных Наций в Нью-Йорке. Горизонтальная перекладина большинства христианских крестов делит вертикальную в том же отношении: длина над перекладиной составляет 61,8% от длины под пересечением. Золотая пропорция обнаруживается также в природных явлениях — в цветочных лепестках, в листьях артишока, в черешках пальмовых листьев. Отношение длины части тела человека выше пупка к длине части ниже пупка у нормально сложенного человека равно 0,618. Длина фаланг пальцев, если последовательно идти от кончиков до ладони, соотносится так же 2)(Точнее говоря, по формуле Фибоначчи, отношение меньшей части к большей равно отношению большей части к целому).
Одним из наиболее романтичных воплощений отношения Фибоначчи являются пропорции и форма чудесной спирали. На приведенном рисунке видно, как она формируется на основе ряда квадратов, длины сторон которых определяются рядом Фибоначчи. Процесс начинается с построения двух маленьких квадратов одинакового размера.
Дата добавления: 2014-11-06; Просмотров: 342; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |