КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вероятность каждой суммы при бросании пары костей 1 страница
В триктрак, другой игре, в которой игроки бросают две кости, числа на каждой кости могут или складываться, или рассматриваться порознь. Это значит, что, если, например, брошены две кости, 5 может получиться пятнадцатью разными путями: 5 + 1 5 + 2 5 + 3 5 + 4 5 + 5 5 + 6 1 + 5 2 + 5 3 + 5 4 + 5 6 + 5 2 + 3 3 + 2 Вероятность выбросить пятерку равна 15/з6> или 42%15. Здесь важна семантика. По определению Кардано, вероятность некоего исхода есть отношение числа благоприятных исходов к общему числу возможных исходов. Шансы (odds) некоего исхода есть отношение числа благоприятных исходов к числу неблагоприятных исходов. Шансы, разумеется, зависят от вероятности, и их удобнее использовать при заключении пари. Если вероятность выбросить пятерку в триктрак равна 15 удачным броскам на каждые 36 бросков, то шансы выбросить пятерку равны отношению 15 к 21. Если вероятность выбросить 7 в крепсе равна одному удачному на каждые шесть бросков, то шансы выбросить число, отличное от 7, равны 5 к 1. Это значит, что вы должны ставить не более одного доллара за то, что в следующем броске выпадет 7, если ваш партнер поставил 5 долларов против. При подбрасывании монеты орел выпадает с вероятностью один к двум. Поскольку шансы выбросить орел и решку равны, никогда не ставьте больше, чем ваш партнер по игре. Если шансы в заезде на бегах оцениваются как 1 к 20, теоретическая вероятность того, что ваша кляча победит, оценивается как 1 из 21, или 4,8%, т. е. менее 5%.
Мы никогда не узнаем, писал ли Кардано «Liber de Ludo Aleae» как учебник для игроков или как теоретический труд по теории вероятностей. Учитывая место игры в его жизни, правила игры могли послужить только поводом для этой работы, но мы не беремся с уверенностью это утверждать. Игра — идеальная лаборатория для проведения экспериментов по квантификации риска. Необыкновенная интеллектуальная любознательность Кардано и набор математических принципов, которые он имел смелость охватить в «Ars Magna», позволяют предположить, что он мог искать нечто большее, чем путь к выигрышу за игорным столом. Кардано начал «Liber de Ludo Aleae» в духе экспериментального исследования, а закончил созданием теоретических основ комбинаторики. Более того, оригинальные взгляды на роль вероятности в случайных играх, не говоря уже о математических средствах, примененных Кардано для решения поставленных задач, позволяют считать «Liber de Ludo Aleae» первой в истории попыткой измерения риска. Именно благодаря блестящим достижениям Кардано возникла сама идея и возможность управления риском. Каковы бы ни были мотивы написания книги, она стала выдающимся произведением, полным оригинальности и математической смелости. Но главным героем этой истории является не Кардано, а время, в которое он жил. Возможность открыть то, что открыл он, существовала тысячи лет. И индо-арабская система счисления достигла Европы по меньшей мере за триста лет до написания «Liber de Ludo Aleae». He хватало свободы мысли, страсти к эксперименту и стремления взять под контроль будущее, которые были пробуждены Ренессансом.
Последним великим итальянцем, бившимся над проблемами вероятности, был Галилео, родившийся, как и Шекспир, в 1564 году, когда Кардано уже состарился16. Подобно очень многим своим современникам, Галилео обожал экспериментировать и не упускал ни одного повода использовать для эксперимента все, что попадалось ему на глаза. Даже собственный пульс он использовал для измерения времени. Однажды в 1583 году во время службы в Пизанском кафедральном соборе Галилео обратил внимание на лампу, свисавшую с потолка. Порывы сквозняка раскачивали ее то сильнее, то слабее. Он заметил, что все колебания совершались за один и тот же промежуток времени независимо от величины амплитуды. Результатом этого случайного наблюдения стало использование маятника для производства часов. За тридцать лет среднесуточная ошибка таких часов была снижена с пятнадцати минут до десяти секунд и менее. Это был союз времени и технологии. Таков был стиль жизни Галилео. Около сорока лет спустя, уже будучи Первым и Экстраординарным Математиком Пизанского университета и Математиком Его светлости Козимо II, Великого герцога Тосканского, он написал короткое эссе об игре, «чтобы угодить ему, приказавшему описать, что мне пришло в голову об этой проблеме»17. Эссе называлось «Sopra le Scoperte del Dadi» («Об игре в кости»). Использование итальянского вместо латыни указывает на то, что Галилео не слишком уважал тему своей работы и считал ее не стоящей серьезного обсуждения. Создается впечатление, что он без энтузиазма работал над очередным малопрестижным заданием, полученным от хозяина, Великого герцога, пожелавшего увеличить свои шансы за игорным столом. При написании этого эссе Галилео удалось использовать работу Кардано, хотя до ее публикации оставалось еще сорок лет. Флоренс Найтингейл Давид (David), историк и статистик, предположил, что Кардано так долго размышлял над этими проблемами, что непременно должен был обсуждать их с друзьями. Более того, он был популярным лектором. Так что математики имели возможность хорошо познакомиться с содержанием «Liber de Ludo Aleae», даже не читая саму книгу18. Подобно Кардано, Галилео занялся анализом результатов, получаемых при бросании одной или нескольких костей, описал общие выводы о частоте различных комбинаций и типы исходов. Между прочим, он утверждал, что использовал методологию, доступную любому математику. В частности, основанная на понятии случайности концепция вероятности настолько прочно утвердилась к 1623 году, что Галилео полагал, что он здесь мало что способен добавить. Однако еще оставалось широкое поле для открытий. Идеи о вероятности и риске развивались быстрыми темпами, а интерес к этим проблемам через Францию распространился на Швейцарию, Германию и Англию. Франция, например, в течение XVII и XVIII веков испытала настоящий математический бум, герои которого пошли значительно дальше экспериментов Кардано с бросанием костей. Успехи вычислительных методов и алгебры привели к бурному развитию абстрактных математических понятий и обеспечили обоснование многих практических приложений вероятности — от страхования и инвестирования до таких, казалось бы, далеких от математики предметов, как медицина, наследственность, поведение молекул, стратегия и тактика военных действий и предсказание погоды. Первым шагом была разработка измерительных методов, пригодных для определения степени упорядоченности, которая может скрываться в неопределенном будущем. Попытки разработать такие методы впервые были предприняты еще в XVII веке. В 1619 году, например, пуританский священник Томас Гатакер опубликовал нашумевшую работу «О природе и использовании жребия» («Of the Nature and Use of Lots»), в которой утверждал, что исход случайных игр определяет не Бог, а закон природы вещей, или естественный закон19. К концу XVII века, спустя почти сто лет после смерти Кар-дано и менее чем через пятьдесят лет после смерти Галилео, были решены важные проблемы теории вероятностей. Следующим шагом было решение вопроса о том, как люди осознают вероятности и реагируют на них в реальной жизни. Этим в конечном счете и занимаются теории управления риском и принятия решений, и здесь баланс между объективными данными и волевыми качествами приобретает решающее значение.
Глава 4 Французские знакомства Ни Кардано, ни Галилео не заметили, что они вплотную подошли к формулировке законов вероятности, являющихся главным орудием управления риском. Кардано сделал на основе своих экспериментов ряд весьма важных обобщений, но интересовала его не столько теория вероятностей, сколько оптимизация игры, а Галилео даже теория игры не особо интересовала. Галилео умер в 1654 году. Двенадцать лет спустя три француза осуществили наконец гигантский прорыв в таинственный мир неопределенности, и затем меньше чем за десять лет рудиментарная идея превратилась в хорошо разработанную теорию, расчистившую путь замечательным практическим достижениям. Голландец Гюйгенс в 1657 году опубликовал ставший очень популярным учебник по теории вероятностей (который в 1664 году внимательно прочел и отметил Ньютон); примерно в это же время Лейбниц размышлял над возможностью применения теории вероятностей к решению юридических проблем; а в 1662 году монахи парижского монастыря Пор-Рояль выпустили новаторскую работу по философии и вероятности под названием «La logique» («Логика»). В 1660 году англичанин Джон Грант опубликовал результаты своего анализа демографических данных на основе статистики смертности, взятой им из записей в церковноприходских регистрационных книгах. К концу 1660 года в голландских городах, традиционно финансировавших городские нужды за счет продажи пожизненной ренты, на этой основе была создана действенная система страхования. К 1700 году, как мы уже отмечали ранее, и английское правительство стало покрывать свой бюджетный дефицит за счет продажи полисов пожизненной ренты. А началось все со странной троицы французов, которые, глядя на игровой стол, заложили теоретические основы измерения вероятности. Одним из них был Блез Паскаль, блистательный молодой повеса, который стал впоследствии религиозным фанатиком и кончил полным отрицанием ценности разума. Другой, Пьер Ферма, преуспевающий адвокат, для которого математика была побочным занятием. Третьим был аристократ шевалье де Мере, совмещавший свое увлечение математикой с неудержимой страстью к азартным играм; он вошел в историю тем, что сформулировал задачу, решение которой привело двух остальных на тропу открытий. Ни молодой повеса, ни адвокат не нуждались в экспериментах для подтверждения своих гипотез. В отличие от Кардано они с первых шагов работы над теорией вероятностей пользовались индуктивным методом. Теория позволила измерять вероятности в численном виде и отказаться от принятия решений на основе субъективных мнений.
Склонный к философствованию знаменитый математик Паскаль родился в 1623 году, когда Галилей заканчивал эссе «Об игре в кости». Рожденный во время религиозных войн XVII столетия, он провел полжизни в метаниях между блистательной математической карьерой и уходом в религиозную экзальтацию, по существу своему антиинтеллектуальную. Хотя он был замечательным математиком и гордился своими достижениями как «мастера геометрии», самой сильной страстью его жизни оказались в конечном итоге религиозные переживания1. Паскаль начинал жизнь как вундеркинд. Очарованный формами и фигурами мальчик самостоятельно доказал большинство теорем евклидовой геометрии, заполняя геометрическими построениями плитки пола детской комнаты. В возрасте 16 лет он написал работу, посвященную коническим сечениям, поразившую великого Декарта. Увлечение маленького Блеза математикой сослужило хорошую службу его отцу, который тоже был в своем роде математиком и вел обеспеченную жизнь в качестве сборщика, а если говорить точнее, откупщика налогов. Откупщик налогов ссужал деньгами монарха, подобно фермеру, засевающему поле, — и затем собирал деньги с населения, как тот же фермер собирает жатву, в надежде собрать больше, чем посеял. Когда Паскаль был еще совсем мальчишкой, он изобрел и запатентовал счетную машину для облегчения скучной работы М. Паскаля по ежедневному подведению баланса. Это хитроумное механическое устройство с приводами и колесами, которые вращались взад-вперед, складывая и вычитая, было предшественником современных электронных калькуляторов. Юный Паскаль выполнял на своей машине также умножение и деление и даже начал разрабатывать конструкцию для извлечения квадратных корней. К сожалению, в течение последующих 250 лет клерки и бухгалтеры не могли использовать эту машину из-за очень высокой стоимости. Заметив гениальные способности своего сына, отец Блеза, когда тому исполнилось четырнадцать лет, ввел его в избранный кружок, еженедельно собиравшийся для дискуссий в доме иезуитского священника по имени Марен Мерсенн, расположенном недалеко от Королевской площади в Париже. В первой половине XVII века дом аббата Мерсенна был центром мировой науки и математики. Не довольствуясь организацией еженедельных дискуссий с участием крупнейших ученых, аббат своим неровным почерком вел обширнейшую переписку с учеными всей Европы, сообщая всем и каждому обо всем, что было нового и интересного2. В отсутствие ученых обществ, профессиональных журналов и других средств обмена идеями и информацией Мерсенн внес ценный вклад в развитие и распространение новых научных теорий. Парижская Академия наук и Лондонское Королевское общество, основанные лет через двадцать после его смерти, были прямыми наследниками его кружка. Хотя ранние работы Блеза Паскаля по геометрии и алгебре произвели большое впечатление на сильных математиков, которых он встретил в кружке Мерсенна, у него скоро возникли прямо противоположные интересы. В 1646 году старший Паскаль поскользнулся на льду и сломал бедро; костоправы, приглашенные ухаживать за ним, оказались членами ордена янсенистов. Эти люди верили, что единственный путь к спасению лежит через аскетизм, жертвенность, смирение и самоограничение. Они проповедовали, что человек, который не стремится неустанно ко все более высокому духовному очищению, неминуемо скатится в бездну греха. Утверждая примат чувства и веры, они третировали разум, считая его помехой на пути к искуплению. Залечив бедро Паскаля-отца, янсенисты в течение трех месяцев обрабатывали душу Паскаля-сына, который с энтузиазмом воспринял их доктрину. Теперь он избегал и математики, и других наук, и всех развлечений своей прежней парижской жизни. Религия поглотила его целиком. Объясняя свое состояние, он смог только сказать: «Кто поместил меня сюда? По чьему повелению и предписанию это место и это время предназначены мне? Вечная тишина этого бесконечного пространства приводит меня в ужас»3. Ужас неожиданно поразил его и с другой стороны. В 1650 году в возрасте 27 лет он стал жертвой частичного паралича, его преследовали страшные головные боли, и было трудно глотать пищу. В качестве лечения доктора предписали ему встряхнуться и вернуться к прежней рассеянной жизни. Не теряя времени, Паскаль последовал их советам. После смерти отца он сказал своей сестре: «Не будем горевать, подобно язычникам, не имеющим надежды»4. Он встряхнулся настолько, что даже превзошел свой прежний разгульный образ жизни, и стал постоянным посетителем парижских игорных домов. Вернувшись к мирской суете, Паскаль возобновил свои исследования, касающиеся математики и смежных дисциплин. В одном из экспериментов он, вопреки господствовавшему еще со времен Аристотеля мнению, будто природа боится пустоты, доказал существование вакуума. В ходе этого эксперимента он продемонстрировал, что атмосферное давление может быть измерено на разных высотах с помощью ртути, заключенной в трубку, из которой выкачан воздух.
Примерно в это же время состоялось знакомство Паскаля с шевалье де Мере, который гордился своими математическими способностями и умением просчитывать шансы в казино. Как-то в конце 1650 года в письме к Паскалю он хвастал: «Я открыл в математике вещи весьма необычные, о которых лучшие ученые прежних времен никогда не помышляли и которыми были поражены лучшие математики Европы»5. Кажется, он сумел произвести впечатление на самого Лейбница, отозвавшегося о шевалье как о «человеке острого ума, который был одновременно игроком и философом». Правда, в другой раз Лейбниц заметил: «Я почти смеялся над важничаньем шевалье де Мере в его письме к Паскалю»6. Паскаль согласился с Лейбницем. «У месье де Мере, — писал он своему коллеге, — хорошая голова, но он не геометр, а это, сами понимаете, большой недостаток»7. Здесь Паскаль высказался как профессионал, которому приятно уколоть дилетанта. Во всяком случае, он не особенно высоко ставил математические достижения шевалье8. Однако именно от Паскаля мы узнаём об интуитивном понимании вероятности, которым обладал де Мере. Играя, он ставил вновь и вновь на комбинации, приносившие ему небольшие выигрыши, которые его противники считали чисто случайными. Согласно Паскалю, он знал, что если метнуть одну кость четыре раза, то вероятность увидеть шестерку превысит 50%, а точнее — 51,77469136%. Его стратегия заключалась в том, чтобы выигрывать помалу при большом числе бросков, избегая делать редкие крупные ставки. Эта стратегия требовала много денег, потому что шестерка могла довольно долго не выпадать и приходилось удлинять серию бросков, дожидаясь, пока средний процент появления шестерки превысит 50% 9. Де Мере пытался варьировать свою систему, ставя на то, что sonnez, или дубль-шесть, в 24 бросках двух костей должен выпадать с вероятностью, большей 50%. На этом он потерял довольно много денег, пока не выяснилось, что эта вероятность при 24 бросках составляет только 49,14%. Если бы он ставил на 25 бросков, при которых вероятность дубль-шесть составляет 50,55%, он мог бы разбогатеть. История освоения стратегии риска окрашена не только в красный цвет, но и в черный. До встречи с Паскалем шевалье неоднократно обсуждал со многими французскими математиками задачу об очках — как два игрока в balla должны разделить банк в случае прекращения неоконченной игры, однако никто не смог дать ему вразумительный ответ. Хотя эта задача заинтересовала Паскаля, он не захотел решать ее самостоятельно. В наши дни такая проблема стала бы темой обсуждения для группы специалистов на ежегодном семинаре одного из научных обществ. Во времена Паскаля такой форум был невозможен. В лучшем случае небольшая компания ученых могла обсудить проблему в интимной обстановке гостиной аббата Мерсенна, но обычно в таких ситуациях прибегали к личной переписке с другими математиками, которые могли подсказать что-либо полезное для решения задачи. В 1654 году Паскаль обратился к Пьеру де Кар-кави, члену кружка аббата Мерсенна, который свел его с тулузским адвокатом Пьером де Ферма. Вряд ли Паскаль мог найти лучшего партнера для решения этой задачи. Ферма был феноменально образованным человеком10. Он говорил на всех основных европейских языках, на некоторых из них даже писал стихи и составлял обширные комментарии к греческим и римским авторам. Кроме того, он обладал редкостным талантом математика. Независимо от Декарта он изобрел аналитическую геометрию, внес большой вклад в раннее развитие численных методов, проводил исследования, направленные на определение веса Земли, изучал оптические явления, в частности рефракцию световых волн. В ходе оказавшейся весьма продолжительной переписки с Паскалем он внес значительный вклад в теорию вероятностей. Но коронные достижения Ферма относятся к теории чисел — анализу структурных соотношений каждого числа с остальными. Эти соотношения порождают бесчисленные головоломки, некоторые из которых не нашли решения и по сей день. Греки, например, обнаружили то, что они назвали совершенными числами, — это числа, которые равны сумме всех своих делителей, за исключением их самих, подобные 6 = 1 + 2 + 3. Следующее после 6 совершенное число 28 = 1 + 2 + 4 + 7 + 14. Третье такое число — это 496, следующее — 8128. Пятое совершенное число — 33 550336. Пифагор открыл то, что он называл дружественными числами или «вторыми я» чисел, представляющие собой суммы всех делителей, отличных от самого числа. Все делители числа 284, то есть 1, 2, 4, 71 и 142, в сумме дают 220; все делители числа 220, то есть 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, в сумме дают 284. Никому не удалось установить правила для нахождения всех существующих совершенных чисел или всех дружественных чисел, как никто не сумел вывести формулы рядов, в которых они следуют друг за другом. С аналогичными трудностями мы сталкиваемся при рассмотрении простых чисел, подобных 1, 3 или 29, каждое из которых делится только на 1 и на самого себя. С одной стороны, Ферма считал, что он получил формулу вычисления простых чисел, но, с другой стороны, он предупреждал, что не смог теоретически доказать ее всеобщность. Формула, которую ему удалось найти, выдает 5, затем 17, затем 257 и, наконец, 65 537 — всё простые числа, а следующим числом, получаемым на основе его формулы, оказывается 4 294 967 297. По-видимому, наибольшую славу Ферма принесло нацарапанное на полях «Арифметики» Диофанта утверждение, известное как великая теорема Ферма. Несмотря на трудность его доказательства, суть этого утверждения изложить несложно. Греческий математик Пифагор впервые показал, что квадрат наибольшей стороны прямоугольного треугольника, гипотенузы, равен сумме квадратов двух других его сторон. Диофант, один из древнейших исследователей квадратных уравнений, написал сходное выражение: х4 + у* + г4 = и2. «Почему, — спрашивает Ферма, — Диофант не искал две [вместо трех] четвертых степени, дающих в сумме квадрат некоего числа? Дело в том, что это невозможно, и мой метод дает возможность доказать это со всей строгостью»11. Ферма заметил, что Пифагор был прав, написав а2 + Ь2 = с2, но а3 + Ь3 не будут равны с3 и ни для одного показателя степени, большего чем 2, такое равенство не будет выполняться: теорема Пифагора верна только для квадратов. И затем Ферма написал на полях книги: «У меня есть прекрасное доказательство этого утверждения, но здесь негде его записать»12. Этой короткой фразой он ошарашил математиков, которые вот уже 350 лет пытаются найти теоретическое доказательство утверждения, получившего многочисленные эмпирические подтверждения. В 1993 году английский математик Эндрю Уайлс (Wiles) заявил, что он решил эту головоломную задачу после семи лет работы в Принстоне. Его результаты были опубликованы в «Annals of Mathematics» в мае 1995 года, но математики всё еще спорят относительно того, что он, собственно, получил. Великая теорема Ферма представляет собой скорее курьез, чем постижение окружающего мира. А вот решение, которое Ферма и Паскаль разработали для задачи о разделе банка в незавершенной игре, до сих пор приносит пользу обществу в качестве краеугольного камня современной системы страхования и других форм управления риском.
Решение задачи об очках основывается на том, что игрок, опережающий противника в момент остановки игры, имеет больше шансов на победу, если игра продолжится. Но насколько больше? Насколько малы шансы отстающего игрока? Как, в конце концов, перекинуть мост от этой задачи к науке прогнозирования? Переписка Паскаля и Ферма, которую они вели по этому поводу в 1654 году, обозначила эпохальное событие в истории математики и теории вероятностей* (Эта переписка в полном объеме, переведенная на английский язык, опубликована в: [David, 1962, Приложение 4].). Удовлетворяя любопытство, проявленное к этой старой проблеме шевалье де Мере, они создали систематический метод анализа ожидаемых исходов. Поскольку может произойти больше вещей, чем происходит на самом деле, Паскаль и Ферма предложили процедуру определения вероятности каждого из возможных результатов при допущении, что исходы могут быть оценены математически. Они подошли к проблеме с разных позиций. Ферма обратился к чистой алгебре. Паскаль оказался более изобретательным: он использовал геометрическую форму для представления алгебраических структур. Его методология проста и приложима к широкому спектру проблем теории вероятностей. Основная математическая идея, стоящая за этим геометрическим представлением алгебраических соотношений, зародилась задолго до Паскаля и Ферма. Омар Хайям обсуждал ее примерно на 450 лет раньше. В 1303 году китайский математик Ху Шайчи, явно не претендуя на оригинальность, подошел к проблеме с помощью способа представления, который он называл «правдивое зеркало четырех элементов». Кардано тоже знал об этом методе13. Правдивое зеркало Ху приобрело известность как треугольник Паскаля. «Пусть кто-нибудь попробует утверждать, что я не сказал ничего нового, — с гордостью пишет Паскаль в автобиографии. — Новшеством является трактовка предмета. Когда мы играем в теннис, мяч у нас общий, но один из нас играет лучше»14.
1 1 1 5 10 10 5 1 1 6 15 20 15 6 1 С первого взгляда на треугольник Паскаля рябит в глазах, но его структура достаточно проста: каждое число равно сумме двух чисел, расположенных над ним справа и слева. Вероятностный анализ начинается с вычисления числа возможных ситуаций, обеспечивающих определенный исход некоего события — circuit Кардано* (См.главу 3, стр. 68. — Примеч. переводчика.). Именно эта совокупность и представлена последовательностью чисел в каждой строке треугольника Паскаля. Первая строка представляет вероятность события, которое не может не произойти. Здесь возможен только один исход с нулевой неопределенностью; это, по сути, не относится к вероятностному анализу. Вторая строка уже представляет вероятностную ситуацию с шансами 50 на 50: вероятность исхода в ситуации, подобной рождению мальчика или девочки в семье, планирующей иметь только одного ребенка, или вероятность того, что при одном броске монеты вам выпадет именно орел или решка. При наличии только двух возможных исходов результат может быть тот или иной: мальчик или девочка, орел или решка; вероятность рождения мальчика, а не девочки или выпадения орла, а не решки равна 50%. Рассмотрим в том же духе остальные строки треугольника. Третья строка моделирует ситуацию с семьей, в которой двое детей. Возможны четыре варианта: один шанс за двух мальчиков, один шанс за двух девочек и два шанса за то, что в семье есть и мальчик, и девочка — мальчик старше и мальчик младше девочки. Теперь в конечном счете один мальчик (или одна девочка) появляются в трех из четырех исходов, и, таким образом, вероятность наличия мальчика (или девочки) в семье с двумя детьми равна 75%, вероятность наличия мальчика и девочки в одной такой семье равна 50%. Очевидно, что процесс зависит от комбинаций чисел, которые были отмечены в работе Кардано, правда еще не опубликованной к тому времени, когда Паскаль взялся за решение задачи. Этот же метод анализа приводит к решению задачи об очках. Рассмотрим вместо предложенной Пацциоли игры в balla бейсбол. Какова вероятность того, что ваша команда победит в World Series*(Первенство США по бейсболу. — Примеч. переводчика.) после проигрыша первого матча? Если мы, как в'случайных играх, предположим, что две команды играют одинаково, задача оказывается идентичной задаче об очках, которую решали Ферма и Паскаль15. Допустим, вторая команда уже выиграла одну игру. Каково число разных последовательностей результатов, возможных в шести играх, и какие из этих побед и поражений приведут вашу команду к победам в четырех играх, необходимым для выигрыша? Ваша команда может выиграть вторую игру, проиграть третью и затем выиграть последующие три. Она может проиграть две игры подряд и выиграть последующие четыре. Или она может выиграть нужные четыре игры сразу, оставив команду-соперника только с одним выигрышем. Сколько существует возможных комбинаций побед и поражений в серии из шести игр? Треугольник дает ответ на этот вопрос. Все, что вам нужно, вы найдете в соответствующей строке. Заметьте, что вторая строка треугольника, строка с шансами 50 на 50, моделирует задачу о семье, имеющей одного ребенка, или задачу об одном броске монеты и описывает события с числом исходов, равным 2. Следующая строка показывает распределение исходов в задаче о семье с двумя детьми или в задаче о двух бросках монеты и описывает события, у которых число возможных исходов равно 4, или 22. Следующая строка описывает события с числом исходов, равным 8, или 23, и показывает распределение исходов в задаче о семье с тремя детьми. В задаче с шестью играми, оставшимися для определения победителя турнира, вам нужно рассмотреть строку с числом возможных исходов 26, то есть с 64 возможными последовательностями побед и поражений2). Последовательность чисел в этой строке такова: 1 6 15 20 15 6 1 Помните, что вашей команде для победы нужно выиграть еще четыре игры, а команде соперников нужны только три победы. Возможен случай, когда ваша команда выиграет все игры, а ее соперники не одержат ни одной победы; число 1 в начале строки относится к этому случаю. Следующее число 6. Оно фиксирует шесть разных возможных последовательностей исходов, при осуществлении которых ваша команда В выиграет турнир, а ее соперники С выиграют только одну игру:
Дата добавления: 2014-11-06; Просмотров: 317; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |