Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вероятность каждой суммы при бросании пары костей 1 страница




 

Сумма Вероятность
  1/36  
  2/36» ИЛИ 1/18
  3/36> ИЛИ 1/12
  4/36» ИЛИ!/9
  5/36  
  6/36, или 1/6
  5/36  
  4/36, ИЛИ 1/9
  3/36, ИЛИ 1/12
  2/36, ИЛИ 1/18
  Vse  

В триктрак, другой игре, в которой игроки бросают две кости, числа на каждой кости могут или складываться, или рассматри­ваться порознь. Это значит, что, если, например, брошены две кос­ти, 5 может получиться пятнадцатью разными путями:

5 + 1

5 + 2

5 + 3

5 + 4

5 + 5

5 + 6

1 + 5

2 + 5

3 + 5

4 + 5

6 + 5
1+4
4 + 1

2 + 3

3 + 2

Вероятность выбросить пятерку равна 15/з6> или 42%15.

Здесь важна семантика. По определению Кардано, вероятность некоего исхода есть отношение числа благоприятных исходов к общему числу возможных исходов. Шансы (odds) некоего исхода есть отношение числа благоприятных исходов к числу неблагопри­ятных исходов. Шансы, разумеется, зависят от вероятности, и их удобнее использовать при заключении пари.

Если вероятность выбросить пятерку в триктрак равна 15 удач­ным броскам на каждые 36 бросков, то шансы выбросить пятерку равны отношению 15 к 21. Если вероятность выбросить 7 в крепсе равна одному удачному на каждые шесть бросков, то шансы выбро­сить число, отличное от 7, равны 5 к 1. Это значит, что вы должны ставить не более одного доллара за то, что в следующем броске выпа­дет 7, если ваш партнер поставил 5 долларов против. При подбрасы­вании монеты орел выпадает с вероятностью один к двум. Поскольку шансы выбросить орел и решку равны, никогда не ставьте больше, чем ваш партнер по игре. Если шансы в заезде на бегах оцениваются как 1 к 20, теоретическая вероятность того, что ваша кляча победит, оценивается как 1 из 21, или 4,8%, т. е. менее 5%.

 

Мы никогда не узнаем, писал ли Кардано «Liber de Ludo Aleae» как учебник для игроков или как теоретический труд по теории вероятностей. Учитывая место игры в его жизни, правила игры могли послужить только поводом для этой работы, но мы не берем­ся с уверенностью это утверждать. Игра — идеальная лаборатория для проведения экспериментов по квантификации риска. Необык­новенная интеллектуальная любознательность Кардано и набор ма­тематических принципов, которые он имел смелость охватить в «Ars Magna», позволяют предположить, что он мог искать нечто большее, чем путь к выигрышу за игорным столом.

Кардано начал «Liber de Ludo Aleae» в духе экспериментально­го исследования, а закончил созданием теоретических основ ком­бинаторики. Более того, оригинальные взгляды на роль вероятнос­ти в случайных играх, не говоря уже о математических средствах, примененных Кардано для решения поставленных задач, позволя­ют считать «Liber de Ludo Aleae» первой в истории попыткой из­мерения риска. Именно благодаря блестящим достижениям Карда­но возникла сама идея и возможность управления риском. Каковы бы ни были мотивы написания книги, она стала выдающимся про­изведением, полным оригинальности и математической смелости.

Но главным героем этой истории является не Кардано, а время, в которое он жил. Возможность открыть то, что открыл он, суще­ствовала тысячи лет. И индо-арабская система счисления достигла Европы по меньшей мере за триста лет до написания «Liber de Ludo Aleae». He хватало свободы мысли, страсти к эксперименту и стремления взять под контроль будущее, которые были пробужде­ны Ренессансом.

 

Последним великим итальянцем, бившимся над проблемами ве­роятности, был Галилео, родившийся, как и Шекспир, в 1564 году, когда Кардано уже состарился16. Подобно очень многим своим со­временникам, Галилео обожал экспериментировать и не упускал ни одного повода использовать для эксперимента все, что попадалось ему на глаза. Даже собственный пульс он использовал для измере­ния времени.

Однажды в 1583 году во время службы в Пизанском кафед­ральном соборе Галилео обратил внимание на лампу, свисавшую с потолка. Порывы сквозняка раскачивали ее то сильнее, то сла­бее. Он заметил, что все колебания совершались за один и тот же промежуток времени независимо от величины амплитуды. Резуль­татом этого случайного наблюдения стало использование маятника для производства часов. За тридцать лет среднесуточная ошибка таких часов была снижена с пятнадцати минут до десяти секунд и менее. Это был союз времени и технологии. Таков был стиль жиз­ни Галилео.

Около сорока лет спустя, уже будучи Первым и Экстраординар­ным Математиком Пизанского университета и Математиком Его светлости Козимо II, Великого герцога Тосканского, он написал короткое эссе об игре, «чтобы угодить ему, приказавшему описать, что мне пришло в голову об этой проблеме»17. Эссе называлось «Sopra le Scoperte del Dadi» («Об игре в кости»). Использование итальянского вместо латыни указывает на то, что Галилео не слишком уважал тему своей работы и считал ее не стоящей серь­езного обсуждения. Создается впечатление, что он без энтузиазма работал над очередным малопрестижным заданием, полученным от хозяина, Великого герцога, пожелавшего увеличить свои шансы за игорным столом.

При написании этого эссе Галилео удалось использовать работу Кардано, хотя до ее публикации оставалось еще сорок лет. Фло­ренс Найтингейл Давид (David), историк и статистик, предполо­жил, что Кардано так долго размышлял над этими проблемами, что непременно должен был обсуждать их с друзьями. Более того, он был популярным лектором. Так что математики имели возмож­ность хорошо познакомиться с содержанием «Liber de Ludo Aleae», даже не читая саму книгу18.

Подобно Кардано, Галилео занялся анализом результатов, по­лучаемых при бросании одной или нескольких костей, описал об­щие выводы о частоте различных комбинаций и типы исходов. Между прочим, он утверждал, что использовал методологию, до­ступную любому математику. В частности, основанная на понятии случайности концепция вероятности настолько прочно утвердилась к 1623 году, что Галилео полагал, что он здесь мало что способен добавить.

Однако еще оставалось широкое поле для открытий. Идеи о ве­роятности и риске развивались быстрыми темпами, а интерес к этим проблемам через Францию распространился на Швейцарию, Германию и Англию.

Франция, например, в течение XVII и XVIII веков испытала на­стоящий математический бум, герои которого пошли значительно дальше экспериментов Кардано с бросанием костей. Успехи вычис­лительных методов и алгебры привели к бурному развитию абст­рактных математических понятий и обеспечили обоснование мно­гих практических приложений вероятности — от страхования и инвестирования до таких, казалось бы, далеких от математики предметов, как медицина, наследственность, поведение молекул, стратегия и тактика военных действий и предсказание погоды.

Первым шагом была разработка измерительных методов, при­годных для определения степени упорядоченности, которая может скрываться в неопределенном будущем. Попытки разработать такие методы впервые были предприняты еще в XVII веке. В 1619 году, например, пуританский священник Томас Гатакер опубликовал на­шумевшую работу «О природе и использовании жребия» («Of the Nature and Use of Lots»), в которой утверждал, что исход случайных игр определяет не Бог, а закон природы вещей, или естественный закон19. К концу XVII века, спустя почти сто лет после смерти Кар-дано и менее чем через пятьдесят лет после смерти Галилео, были решены важные проблемы теории вероятностей. Следующим шагом было решение вопроса о том, как люди осознают вероятности и реа­гируют на них в реальной жизни. Этим в конечном счете и занима­ются теории управления риском и принятия решений, и здесь ба­ланс между объективными данными и волевыми качествами при­обретает решающее значение.

 

 

Глава 4

Французские знакомства

Ни Кардано, ни Галилео не заметили, что они вплотную по­дошли к формулировке законов вероятности, являющихся главным орудием управления риском. Кардано сделал на основе своих экспериментов ряд весьма важных обобщений, но ин­тересовала его не столько теория вероятностей, сколько оптимиза­ция игры, а Галилео даже теория игры не особо интересовала.

Галилео умер в 1654 году. Двенадцать лет спустя три француза осуществили наконец гигантский прорыв в таинственный мир нео­пределенности, и затем меньше чем за десять лет рудиментарная идея превратилась в хорошо разработанную теорию, расчистившую путь замечательным практическим достижениям. Голландец Гюй­генс в 1657 году опубликовал ставший очень популярным учебник по теории вероятностей (который в 1664 году внимательно прочел и отметил Ньютон); примерно в это же время Лейбниц размышлял над возможностью применения теории вероятностей к решению юридических проблем; а в 1662 году монахи парижского монастыря Пор-Рояль выпустили новаторскую работу по философии и вероят­ности под названием «La logique» («Логика»). В 1660 году англи­чанин Джон Грант опубликовал результаты своего анализа демо­графических данных на основе статистики смертности, взятой им из записей в церковноприходских регистрационных книгах. К кон­цу 1660 года в голландских городах, традиционно финансировавших городские нужды за счет продажи пожизненной ренты, на этой ос­нове была создана действенная система страхования. К 1700 году, как мы уже отмечали ранее, и английское правительство стало по­крывать свой бюджетный дефицит за счет продажи полисов по­жизненной ренты.

А началось все со странной троицы французов, которые, глядя на игровой стол, заложили теоретические основы измерения веро­ятности. Одним из них был Блез Паскаль, блистательный молодой повеса, который стал впоследствии религиозным фанатиком и кон­чил полным отрицанием ценности разума. Другой, Пьер Ферма, преуспевающий адвокат, для которого математика была побочным занятием. Третьим был аристократ шевалье де Мере, совмещавший свое увлечение математикой с неудержимой страстью к азартным играм; он вошел в историю тем, что сформулировал задачу, ре­шение которой привело двух остальных на тропу открытий.

Ни молодой повеса, ни адвокат не нуждались в экспериментах для подтверждения своих гипотез. В отличие от Кардано они с пер­вых шагов работы над теорией вероятностей пользовались индук­тивным методом. Теория позволила измерять вероятности в чис­ленном виде и отказаться от принятия решений на основе субъек­тивных мнений.

 

Склонный к философствованию знаменитый математик Пас­каль родился в 1623 году, когда Галилей заканчивал эссе «Об игре в кости». Рожденный во время религиозных войн XVII столетия, он провел полжизни в метаниях между блистательной математи­ческой карьерой и уходом в религиозную экзальтацию, по суще­ству своему антиинтеллектуальную. Хотя он был замечательным математиком и гордился своими достижениями как «мастера гео­метрии», самой сильной страстью его жизни оказались в конечном итоге религиозные переживания1.

Паскаль начинал жизнь как вундеркинд. Очарованный форма­ми и фигурами мальчик самостоятельно доказал большинство тео­рем евклидовой геометрии, заполняя геометрическими построени­ями плитки пола детской комнаты. В возрасте 16 лет он написал работу, посвященную коническим сечениям, поразившую великого Декарта.

Увлечение маленького Блеза математикой сослужило хорошую службу его отцу, который тоже был в своем роде математиком и вел обеспеченную жизнь в качестве сборщика, а если говорить точнее, откупщика налогов. Откупщик налогов ссужал деньгами монарха, подобно фермеру, засевающему поле, — и затем собирал деньги с населения, как тот же фермер собирает жатву, в надежде собрать больше, чем посеял.

Когда Паскаль был еще совсем мальчишкой, он изобрел и за­патентовал счетную машину для облегчения скучной работы М. Паскаля по ежедневному подведению баланса. Это хитроумное механическое устройство с приводами и колесами, которые вра­щались взад-вперед, складывая и вычитая, было предшественни­ком современных электронных калькуляторов. Юный Паскаль выполнял на своей машине также умножение и деление и даже начал разрабатывать конструкцию для извлечения квадратных корней. К сожалению, в течение последующих 250 лет клерки и бухгалтеры не могли использовать эту машину из-за очень высо­кой стоимости.

Заметив гениальные способности своего сына, отец Блеза, когда тому исполнилось четырнадцать лет, ввел его в избранный кружок, еженедельно собиравшийся для дискуссий в доме иезуитского свя­щенника по имени Марен Мерсенн, расположенном недалеко от Королевской площади в Париже. В первой половине XVII века дом аббата Мерсенна был центром мировой науки и математики. Не до­вольствуясь организацией еженедельных дискуссий с участием крупнейших ученых, аббат своим неровным почерком вел обшир­нейшую переписку с учеными всей Европы, сообщая всем и каж­дому обо всем, что было нового и интересного2.

В отсутствие ученых обществ, профессиональных журналов и других средств обмена идеями и информацией Мерсенн внес цен­ный вклад в развитие и распространение новых научных теорий. Парижская Академия наук и Лондонское Королевское общество, основанные лет через двадцать после его смерти, были прямыми наследниками его кружка.

Хотя ранние работы Блеза Паскаля по геометрии и алгебре произвели большое впечатление на сильных математиков, которых он встретил в кружке Мерсенна, у него скоро возникли прямо про­тивоположные интересы. В 1646 году старший Паскаль поскольз­нулся на льду и сломал бедро; костоправы, приглашенные ухажи­вать за ним, оказались членами ордена янсенистов. Эти люди ве­рили, что единственный путь к спасению лежит через аскетизм, жертвенность, смирение и самоограничение. Они проповедовали, что человек, который не стремится неустанно ко все более высо­кому духовному очищению, неминуемо скатится в бездну греха. Утверждая примат чувства и веры, они третировали разум, считая его помехой на пути к искуплению.

Залечив бедро Паскаля-отца, янсенисты в течение трех месяцев обрабатывали душу Паскаля-сына, который с энтузиазмом воспри­нял их доктрину. Теперь он избегал и математики, и других наук, и всех развлечений своей прежней парижской жизни. Религия по­глотила его целиком. Объясняя свое состояние, он смог только сказать: «Кто поместил меня сюда? По чьему повелению и предпи­санию это место и это время предназначены мне? Вечная тишина этого бесконечного пространства приводит меня в ужас»3.

Ужас неожиданно поразил его и с другой стороны. В 1650 году в возрасте 27 лет он стал жертвой частичного паралича, его пре­следовали страшные головные боли, и было трудно глотать пищу. В качестве лечения доктора предписали ему встряхнуться и вер­нуться к прежней рассеянной жизни. Не теряя времени, Паскаль последовал их советам. После смерти отца он сказал своей сестре: «Не будем горевать, подобно язычникам, не имеющим надежды»4. Он встряхнулся настолько, что даже превзошел свой прежний раз­гульный образ жизни, и стал постоянным посетителем парижских игорных домов.

Вернувшись к мирской суете, Паскаль возобновил свои иссле­дования, касающиеся математики и смежных дисциплин. В одном из экспериментов он, вопреки господствовавшему еще со времен Аристотеля мнению, будто природа боится пустоты, доказал суще­ствование вакуума. В ходе этого эксперимента он продемонстриро­вал, что атмосферное давление может быть измерено на разных высотах с помощью ртути, заключенной в трубку, из которой вы­качан воздух.

 

Примерно в это же время состоялось знакомство Паскаля с ше­валье де Мере, который гордился своими математическими способ­ностями и умением просчитывать шансы в казино. Как-то в конце 1650 года в письме к Паскалю он хвастал: «Я открыл в математике вещи весьма необычные, о которых лучшие ученые прежних времен никогда не помышляли и которыми были поражены лучшие мате­матики Европы»5.

Кажется, он сумел произвести впечатление на самого Лейбница, отозвавшегося о шевалье как о «человеке острого ума, который был одновременно игроком и философом». Правда, в другой раз Лейбниц заметил: «Я почти смеялся над важничаньем шевалье де Мере в его письме к Паскалю»6.

Паскаль согласился с Лейбницем. «У месье де Мере, — писал он своему коллеге, — хорошая голова, но он не геометр, а это, са­ми понимаете, большой недостаток»7. Здесь Паскаль высказался как профессионал, которому приятно уколоть дилетанта. Во вся­ком случае, он не особенно высоко ставил математические дости­жения шевалье8.

Однако именно от Паскаля мы узнаём об интуитивном понима­нии вероятности, которым обладал де Мере. Играя, он ставил вновь и вновь на комбинации, приносившие ему небольшие выигрыши, которые его противники считали чисто случайными. Согласно Пас­калю, он знал, что если метнуть одну кость четыре раза, то вероят­ность увидеть шестерку превысит 50%, а точнее — 51,77469136%. Его стратегия заключалась в том, чтобы выигрывать помалу при большом числе бросков, избегая делать редкие крупные ставки. Эта стратегия требовала много денег, потому что шестерка могла довольно долго не выпадать и приходилось удлинять серию бросков, дожида­ясь, пока средний процент появления шестерки превысит 50% 9.

Де Мере пытался варьировать свою систему, ставя на то, что sonnez, или дубль-шесть, в 24 бросках двух костей должен выпа­дать с вероятностью, большей 50%. На этом он потерял довольно много денег, пока не выяснилось, что эта вероятность при 24 брос­ках составляет только 49,14%. Если бы он ставил на 25 бросков, при которых вероятность дубль-шесть составляет 50,55%, он мог бы разбогатеть. История освоения стратегии риска окрашена не только в красный цвет, но и в черный.

До встречи с Паскалем шевалье неоднократно обсуждал со мно­гими французскими математиками задачу об очках — как два иг­рока в balla должны разделить банк в случае прекращения нео­конченной игры, однако никто не смог дать ему вразумительный ответ.

Хотя эта задача заинтересовала Паскаля, он не захотел решать ее самостоятельно. В наши дни такая проблема стала бы темой об­суждения для группы специалистов на ежегодном семинаре одного из научных обществ. Во времена Паскаля такой форум был невоз­можен. В лучшем случае небольшая компания ученых могла обсу­дить проблему в интимной обстановке гостиной аббата Мерсенна, но обычно в таких ситуациях прибегали к личной переписке с другими математиками, которые могли подсказать что-либо полезное для решения задачи. В 1654 году Паскаль обратился к Пьеру де Кар-кави, члену кружка аббата Мерсенна, который свел его с тулузским адвокатом Пьером де Ферма.

Вряд ли Паскаль мог найти лучшего партнера для решения этой задачи. Ферма был феноменально образованным человеком10. Он говорил на всех основных европейских языках, на некоторых из них даже писал стихи и составлял обширные комментарии к греческим и римским авторам. Кроме того, он обладал редкостным талан­том математика. Независимо от Декарта он изобрел аналитическую геометрию, внес большой вклад в раннее развитие численных мето­дов, проводил исследования, направленные на определение веса Земли, изучал оптические явления, в частности рефракцию свето­вых волн. В ходе оказавшейся весьма продолжительной переписки с Паскалем он внес значительный вклад в теорию вероятностей.

Но коронные достижения Ферма относятся к теории чисел — анализу структурных соотношений каждого числа с остальными. Эти соотношения порождают бесчисленные головоломки, некоторые из которых не нашли решения и по сей день. Греки, например, об­наружили то, что они назвали совершенными числами, — это числа, которые равны сумме всех своих делителей, за исключением их са­мих, подобные 6 = 1 + 2 + 3. Следующее после 6 совершенное чис­ло 28 = 1 + 2 + 4 + 7 + 14. Третье такое число — это 496, следую­щее — 8128. Пятое совершенное число — 33 550336.

Пифагор открыл то, что он называл дружественными числами или «вторыми я» чисел, представляющие собой суммы всех дели­телей, отличных от самого числа. Все делители числа 284, то есть 1, 2, 4, 71 и 142, в сумме дают 220; все делители числа 220, то есть 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, в сумме дают 284.

Никому не удалось установить правила для нахождения всех существующих совершенных чисел или всех дружественных чисел, как никто не сумел вывести формулы рядов, в которых они следу­ют друг за другом. С аналогичными трудностями мы сталкиваемся при рассмотрении простых чисел, подобных 1, 3 или 29, каждое из которых делится только на 1 и на самого себя. С одной стороны, Ферма считал, что он получил формулу вычисления простых чи­сел, но, с другой стороны, он предупреждал, что не смог теорети­чески доказать ее всеобщность. Формула, которую ему удалось найти, выдает 5, затем 17, затем 257 и, наконец, 65 537 — всё простые числа, а следующим числом, получаемым на основе его формулы, оказывается 4 294 967 297.

По-видимому, наибольшую славу Ферма принесло нацарапанное на полях «Арифметики» Диофанта утверждение, известное как ве­ликая теорема Ферма. Несмотря на трудность его доказательства, суть этого утверждения изложить несложно.

Греческий математик Пифагор впервые показал, что квадрат наи­большей стороны прямоугольного треугольника, гипотенузы, равен сумме квадратов двух других его сторон. Диофант, один из древней­ших исследователей квадратных уравнений, написал сходное выра­жение: х4 + у* + г4 = и2. «Почему, — спрашивает Ферма, — Диофант не искал две [вместо трех] четвертых степени, дающих в сумме квадрат некоего числа? Дело в том, что это невозможно, и мой ме­тод дает возможность доказать это со всей строгостью»11. Ферма заметил, что Пифагор был прав, написав а2 + Ь2 = с2, но а3 + Ь3 не будут равны с3 и ни для одного показателя степени, большего чем 2, такое равенство не будет выполняться: теорема Пифагора верна толь­ко для квадратов.

И затем Ферма написал на полях книги: «У меня есть прекрас­ное доказательство этого утверждения, но здесь негде его запи­сать»12. Этой короткой фразой он ошарашил математиков, которые вот уже 350 лет пытаются найти теоретическое доказательство утверждения, получившего многочисленные эмпирические подтверж­дения. В 1993 году английский математик Эндрю Уайлс (Wiles) заявил, что он решил эту головоломную задачу после семи лет ра­боты в Принстоне. Его результаты были опубликованы в «Annals of Mathematics» в мае 1995 года, но математики всё еще спорят относительно того, что он, собственно, получил.

Великая теорема Ферма представляет собой скорее курьез, чем постижение окружающего мира. А вот решение, которое Ферма и Паскаль разработали для задачи о разделе банка в незавершенной игре, до сих пор приносит пользу обществу в качестве краеуголь­ного камня современной системы страхования и других форм уп­равления риском.

 

Решение задачи об очках основывается на том, что игрок, опе­режающий противника в момент остановки игры, имеет больше шансов на победу, если игра продолжится. Но насколько больше? Насколько малы шансы отстающего игрока? Как, в конце концов, перекинуть мост от этой задачи к науке прогнозирования?

Переписка Паскаля и Ферма, которую они вели по этому по­воду в 1654 году, обозначила эпохальное событие в истории мате­матики и теории вероятностей* (Эта переписка в полном объеме, переведенная на английский язык, опубликована в: [David, 1962, Приложение 4].). Удовлетворяя любопытство, про­явленное к этой старой проблеме шевалье де Мере, они создали си­стематический метод анализа ожидаемых исходов. Поскольку мо­жет произойти больше вещей, чем происходит на самом деле, Пас­каль и Ферма предложили процедуру определения вероятности каждого из возможных результатов при допущении, что исходы могут быть оценены математически.

Они подошли к проблеме с разных позиций. Ферма обратился к чи­стой алгебре. Паскаль оказался более изобретательным: он использовал геометрическую форму для представления алгебраических структур. Его методология проста и приложима к широкому спектру проблем теории вероятностей.

Основная математическая идея, стоящая за этим геометрическим представлением алгебраических соотношений, зародилась задолго до Паскаля и Ферма. Омар Хайям обсуждал ее примерно на 450 лет раньше. В 1303 году китайский математик Ху Шайчи, явно не пре­тендуя на оригинальность, подошел к проблеме с помощью способа представления, который он называл «правдивое зеркало четырех элементов». Кардано тоже знал об этом методе13.

Правдивое зеркало Ху приобрело известность как треугольник Паскаля. «Пусть кто-нибудь попробует утверждать, что я не сказал ничего нового, — с гордостью пишет Паскаль в автобиографии. — Новшеством является трактовка предмета. Когда мы играем в тен­нис, мяч у нас общий, но один из нас играет лучше»14.

 

 

1 1

1 5 10 10 5 1

1 6 15 20 15 6 1

С первого взгляда на треугольник Паскаля рябит в глазах, но его структура достаточно проста: каждое число равно сумме двух чисел, расположенных над ним справа и слева.

Вероятностный анализ начинается с вычисления числа возмож­ных ситуаций, обеспечивающих определенный исход некоего собы­тия — circuit Кардано* (См.главу 3, стр. 68. — Примеч. переводчика.). Именно эта совокупность и представлена последовательностью чисел в каждой строке треугольника Паска­ля. Первая строка представляет вероятность события, которое не может не произойти. Здесь возможен только один исход с нулевой неопределенностью; это, по сути, не относится к вероятностному анализу. Вторая строка уже представляет вероятностную ситуацию с шансами 50 на 50: вероятность исхода в ситуации, подобной рож­дению мальчика или девочки в семье, планирующей иметь только одного ребенка, или вероятность того, что при одном броске моне­ты вам выпадет именно орел или решка. При наличии только двух возможных исходов результат может быть тот или иной: мальчик или девочка, орел или решка; вероятность рождения мальчика, а не девочки или выпадения орла, а не решки равна 50%.

Рассмотрим в том же духе остальные строки треугольника. Тре­тья строка моделирует ситуацию с семьей, в которой двое детей. Возможны четыре варианта: один шанс за двух мальчиков, один шанс за двух девочек и два шанса за то, что в семье есть и маль­чик, и девочка — мальчик старше и мальчик младше девочки. Те­перь в конечном счете один мальчик (или одна девочка) появляют­ся в трех из четырех исходов, и, таким образом, вероятность нали­чия мальчика (или девочки) в семье с двумя детьми равна 75%, вероятность наличия мальчика и девочки в одной такой семье рав­на 50%. Очевидно, что процесс зависит от комбинаций чисел, ко­торые были отмечены в работе Кардано, правда еще не опублико­ванной к тому времени, когда Паскаль взялся за решение задачи.

Этот же метод анализа приводит к решению задачи об очках. Рас­смотрим вместо предложенной Пацциоли игры в balla бейсбол. Како­ва вероятность того, что ваша команда победит в World Series*(Первенство США по бейсболу. — Примеч. переводчика.) после проигрыша первого матча? Если мы, как в'случайных играх, пред­положим, что две команды играют одинаково, задача оказывается идентичной задаче об очках, которую решали Ферма и Паскаль15.

Допустим, вторая команда уже выиграла одну игру. Каково чис­ло разных последовательностей результатов, возможных в шести иг­рах, и какие из этих побед и поражений приведут вашу команду к победам в четырех играх, необходимым для выигрыша? Ваша ко­манда может выиграть вторую игру, проиграть третью и затем вы­играть последующие три. Она может проиграть две игры подряд и выиграть последующие четыре. Или она может выиграть нужные четыре игры сразу, оставив команду-соперника только с одним вы­игрышем. Сколько существует возможных комбинаций побед и пора­жений в серии из шести игр? Треугольник дает ответ на этот вопрос. Все, что вам нужно, вы найдете в соответствующей строке.

Заметьте, что вторая строка треугольника, строка с шансами 50 на 50, моделирует задачу о семье, имеющей одного ребенка, или задачу об одном броске монеты и описывает события с числом ис­ходов, равным 2. Следующая строка показывает распределение ис­ходов в задаче о семье с двумя детьми или в задаче о двух бросках монеты и описывает события, у которых число возможных исходов равно 4, или 22. Следующая строка описывает события с числом исходов, равным 8, или 23, и показывает распределение исходов в задаче о семье с тремя детьми. В задаче с шестью играми, остав­шимися для определения победителя турнира, вам нужно рассмот­реть строку с числом возможных исходов 26, то есть с 64 возмож­ными последовательностями побед и поражений2). Последователь­ность чисел в этой строке такова:

1 6 15 20 15 6 1

Помните, что вашей команде для победы нужно выиграть еще четыре игры, а команде соперников нужны только три победы. Возможен случай, когда ваша команда выиграет все игры, а ее со­перники не одержат ни одной победы; число 1 в начале строки от­носится к этому случаю. Следующее число 6. Оно фиксирует шесть разных возможных последовательностей исходов, при осуществле­нии которых ваша команда В выиграет турнир, а ее соперники С выиграют только одну игру:




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 317; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.