КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вероятность каждой суммы при бросании пары костей 2 страница
OYYYYY YOYYYY YYCYYY YYYCYY YYYYOY YYYYYO И существует пятнадцать разных возможных последовательностей исходов, при осуществлении которых ваша команда выиграет четыре игры, в то время как команда соперников победит дважды. Все остальные комбинации в конце концов приводят к трем нужным для победы соперников выигрышам их команды и меньшему, чем необходимо для победы вашей команды (напоминаем: ей нужны четыре победы), числу ее выигрышей. Это значит, что существует 1 + 6 + 15 = 22 комбинации, при осуществлении которых ваша команда победит после поражения в первом матче, и 42 комбинации, при которых чемпионом станет команда соперников. В результате вероятность того, что после первого поражения ваша команда в оставшихся шести играх выиграет четыре прежде, чем команда соперников выиграет три, равна 22/64» или чуть больше одной третьей. 2' Математики заметят, что Паскаль на самом деле ввел здесь биномиальное распределение, или коэффициенты возведения (а + ft) в степени, представленные целыми числами. Например, первой строке соответствует (а + fc)° = 1, в то время как четвертой строке соответствует (а + Ь)3 = 1а3 + За2Ь + Зой2 + 1Ь3. Из примера следует еще кое-что. Зачем ваша команда будет играть все шесть оставшихся игр в последовательности, в которой она может победить досрочно? Или зачем соперники будут играть все четыре игры, если они могут выиграть в трех и этого им будет достаточно для победы? Хотя на деле ни одна команда не станет продолжать игру после достижения необходимого для определения чемпиона числа выигрышей, логически законченное решение проблемы было бы неосуществимо без рассмотрения всех математических возможностей. Как заметил Паскаль в переписке с Ферма, в ходе решения задачи математические законы должны доминировать над желанием самих игроков, рассматриваемых только как абстракции. Он поясняет, что «для них обоих абсолютно безразлично и несущественно, будет ли [игра] на деле идти до самого конца».
Переписка была для Паскаля и Ферма восхитительным опытом исследования новых интеллектуальных пространств. Ферма писал Каркави о Паскале: «Я уверен, что он способен решить любую проблему, за которую возьмется». В одном из писем к Ферма Паскаль признаётся: «Ваши числовые построения... превосходят мое понимание». В другом месте он характеризует Ферма как «человека такого выдающегося интеллекта... и такого высочайшего мастерства... [что его работы] сделают его первым среди геометров Европы». У рассматриваемой задачи были аспекты, которые и Паскаля, глубоко погруженного в религиозные и моральные искания, и юриста Ферма беспокоили больше, чем связанные с ней математические проблемы. Согласно полученному ими решению, раздел банка в неоконченной игре в balla затрагивает проблемы морального права. Хотя игроки могли бы сразу поделить банк поровну, это решение Паскалю и Ферма кажется неприемлемым, потому что оно было бы несправедливым по отношению к игроку, который к моменту прекращения игры оказывается впереди16. Паскаль явно озабочен моральными аспектами проблемы и осторожен в словах. В своих комментариях к этой работе он отмечает: «...в первую очередь следует признать, что деньги, поставленные игроками на кон, им больше не принадлежат... но взамен они получают право ожидать того, что им принесет удача в соответствии с правилами, на которые они согласились вначале». Если они решат остановить игру, не доведя ее до конца, им придется вновь восстановить исходные права на внесенные в банк деньги. Тогда «должно действовать правило, согласно которому деньги нужно распределить пропорционально тому, что каждому обещала удача. <...> Это справедливое распределение известно как раздел». Справедливые пропорции раздела определяют принципы теории вероятностей. С учетом этого подхода становится очевидным, что решение Паскаля-Ферма ярко окрашено идеей управления риском, хотя они явно не использовали это понятие. Только безумец идет на риск, если правила не определены, будь то balla, покупка акций IBM, строительство фабрики или согласие на удаление аппендикса. Но помимо моральных проблем, предложенное Паскалем и Ферма решение приводит к точным обобщениям и правилам вычисления вероятностей, включая случаи участия более чем двух игроков, двух команд, двух полов, двух костей или монет с орлом и решкой. Применение этого подхода позволило им расширить границы теоретического анализа далеко за пределы наблюдений Кардано, что две кости с шестью гранями (или два броска одной кости) дадут б2 комбинаций, а один бросок трех костей дает б3 комбинаций. Последнее письмо в переписке Паскаля и Ферма датировано 27 октября 1654 года. Меньше чем через месяц Паскаль прошел через своего рода мистический опыт. Он зашил описание этого события в свое платье, чтобы носить его у сердца, провозгласив: «Отречение, абсолютное и сладостное». Он отказался от занятий математикой и физикой, отрекся от роскоши, покинул старых друзей, продал всё, кроме религиозных книг, и вскоре ушел в парижский монастырь Пор-Рояль. В июле 1660 года Паскаль совершил поездку в Клермон-Фер-ран, недалеко от жилища Ферма в Тулузе. Ферма предложил встретиться, чтобы «обняться и побеседовать пару дней», на полпути между двумя городами; он жаловался на плохое здоровье, объясняя нежелание взять на себя труд проехать все расстояние самому. В августе Паскаль в ответ написал: Я едва помню, что существует такая вещь, как геометрия [т. е. математика. — П. Б.]. Я почитаю геометрию столь бесполезной, что не могу усмотреть разницу между геометром и хорошим ремесленником. Хотя я считаю ее лучшим в мире ремеслом, это все же не более чем ремесло... Весьма вероятно, что я никогда больше не буду думать об этом17. Во время пребывания в Пор-Рояле Паскаль собрал воедино свои мысли о жизни и религии и опубликовал их в книге, озаглавленной «Pensees» («Мысли»)18. Во время работы над этой книгой он заполнил с обеих сторон два листа бумаги, по словам Хакинга «написанные разбегающимся во все стороны почерком... полные подчисток, исправлений, производящие впечатление запоздалых раздумий». Этот фрагмент приобрел известность как пари Паскаля (le pari de Pascal). Здесь он задается вопросом: «Есть Бог или нет Бога? К чему нам склониться? Разум молчит». Опираясь на свой анализ вероятных исходов игры в balla, Паскаль ставит вопрос в терминах случайных игр. Он постулирует игру, которая продолжается до бесконечности. В данный момент бросается монета. На что вы поставите — на орла (Бог есть) или решку (Бога нет)? Хакинг утверждает, что ход рассуждений Паскаля в предложенном им варианте ответа на этот вопрос представляет собой начало теории принятия решений. «Теория принятия решений, — рассуждает Хакинг, — это теория о том, на что решиться, когда неизвестно, что произойдет»19. Принятие такого решения является первым и важнейшим шагом при любых попытках управлять риском. Иногда мы принимаем решения на основе прошлого опыта, тех экспериментов, которые мы или другие проводили в течение жизни. Но нам недоступен эксперимент, способный доказать бытие или небытие Бога. Зато в наших силах исследовать будущие последствия веры или неверия в Бога. Мы никогда не сможем избавиться от этой дилеммы, потому что самим актом своего существования принуждены играть в эту игру. Паскаль объясняет, что вера в Бога — это не решение. Вы не можете проснуться утром и сказать: «Сегодня, кажется, я решу верить в Бога». Вы верите или не верите. Решением, следовательно, является выбор или отказ от таких действий, которые будут вести к вере в Бога, подобно общению с благочестивыми людьми и следованию жизни «святой и праведной». Следующий этим предписаниям ставит на то, что Бог есть. Тот, кто не может смириться с ними, ставит на то, что Бога нет. Единственный способ выбрать между ставкой на то, что Бог есть, и ставкой на то, что Он не существует, в этой описанной Паскалем бесконечной игре с бросанием монеты заключается в принятии решения, является ли исход, при котором Бог существует, в некотором смысле более предпочтительным, чем исход, в соответствии с которым Бог не существует, даже если шансы могут быть только 50 на 50. Как раз этот взгляд привел Паскаля к решению — к выбору, в котором ценность исхода и вероятность того, что он будет иметь место, различаются, потому что последствия обоих исходов различны3). Если Бога нет, не важно, ведем мы праведную жизнь или грешим. Но предположим, что Бог есть. Тогда, поставив против Его существования и отказавшись от праведной жизни, вы рискуете быть обреченным на вечные муки; поставив же на существование Бога, вы приобретаете возможность спасения, если Он есть. Поскольку спасение, естественно, предпочтительнее вечных мук, правильным следует признать решение исходить в своем поведении из предположения, что Бог есть. «К чему нам склониться?» Для Паскаля ответ был очевиден. Здесь Паскаль предвосхитил эпохальное открытие Даниила Бернулли в теории принятия решений, сделанное им в 1738 году, о чем мы поговорим подробно в главе 6. Латинское название этой книги было «Ars Cogitandi», см.: [Hacking, 1975, p. 12, 24].
Когда Паскаль решил пустить в оборот прибыль от принадлежавшей ему омнибусной линии, чтобы оказать финансовую помощь монастырю Пор-Рояль, он получил интересный побочный продукт20. В 1662 году группа его сотоварищей по монастырю опубликовала работу большой важности, «La logique, ou 1'art de penser» («Логика, или Искусство мыслить»), которая между 1662-м и 1668 годами выдержала пять изданий4). Хотя имя ее автора не было названо, основным — но не единственным — автором считается Антуан Арно, которого Хакинг полагает, «по-видимому, самым блестящим теологом своего времени»21. Книга была немедленно переведена на другие европейские языки и еще в XIX столетии использовалась в качестве учебника. В последней части книги есть четыре главы о вероятности, которые касаются процесса развития гипотезы, основанной на ограниченном наборе фактов; сегодня этот процесс называют статистическим выводом. Среди прочего в этих главах излагаются «правило должного применения разума в определении ситуаций, когда следует подчиниться авторитету других», правила истолкования чудес, основа для истолкования исторических событий и рассказывается о применении количественных измерений вероятности22. В последней главе описывается игра, в которой каждый из десяти игроков ставит одну монету в надежде выиграть девять монет партнеров по игре. Автор указывает, что есть «девять шансов потерять монету и только один — выиграть девять»23. Несмотря на тривиальность, эта фраза заслужила бессмертие. По утверждению Хакинга, это первый случай в печатной литературе, «когда вероятность, что называется, измерена»24. Выражение заслуживает бессмертия не только по этой причине. Автор предполагает, что описываемые им игры тривиальны, но он проводит аналогию с событиями, взятыми из жизни. Например, вероятность быть убитым молнией мала, но «многие люди... очень пугаются при звуках грома»25. Затем он высказывает принципиально важное утверждение: «Страх перед ущербом должен быть пропорционален не только величине ущерба, но и вероятности его нанесения»26. Здесь мы сталкиваемся еще с одной важной новой идеей: на решение должны влиять оба фактора — тяжесть последствий и их вероятность. Можно эту мысль сформулировать иначе: решение должно учитывать и силу нашего желания некоего определенного исхода, и оценку того, насколько вероятен желательный исход. Сила нашего стремления к чему-либо, что представляется полезным, быстро становится чем-то большим, чем простой служанкой вероятности. Полезность занимает центральное место во всех построениях теории принятия решений и готовности к риску. Позже мы не раз вернемся к этой мысли.
Историки любят отмечать случаи, когда что-то очень важное почти случилось, но по той или иной причине все-таки не произошло. История треугольника Паскаля — яркий пример такого случая. Мы видели, как можно строить предположения о возможном числе мальчиков и девочек в многодетных семьях. Мы выяснили, как определять вероятные результаты в чемпионате (для равных по классу команд) после того, как часть матчей уже сыграна. Короче говоря, мы уже делали прогнозы! Паскаль и Ферма сумели завладеть ключом к систематическому методу вычисления вероятности будущих событий. Они еще не повернули этот ключ, но уже вставили его в замок. Значение их открытий для управления риском и принятия решений в бизнесе, в частности в системе страхования, было оценено другими. В «Логике» Пор-Рояля сделан первый важный шаг. От Паскаля и Ферма идея предсказания тенденций экономического развития или использования вероятности для предсказания экономических потерь была еще слишком удалена, чтобы они могли заметить и по достоинству оценить ее. Только ретроспективный взгляд позволяет увидеть, как близко они к этому подошли. Неизбежная неопределенность будущего никогда не позволит нам полностью изгнать тень рока из наших надежд и страхов, но после 1654 года способ мумбо-юмбо был навсегда вычеркнут из числа методов прогнозирования и выбора решений.
Глава 5 Замечательные идеи замечательного галантерейщика Всем приходится порой принимать решения на основе ограниченных данных. Пригубив, а то и только понюхав вино, мы решаем, стоит ли пить его дальше. Ухаживание за будущей женой длится короче, чем предстоящая жизнь. Анализ нескольких капель крови помогает осудить или оправдать подозреваемого в убийстве. Опрос 2000 человек позволяет судить о настроении нации. Индекс Dow Jones Industrial строится по данным о поведении тридцати выпусков акций, но по нему судят о движении триллионов долларов, принадлежащих миллионам семей и тысячам крупных финансовых учреждений. Джорджу Бушу хватило одного листа капусты, чтобы решить, что это не для него. Многие критические решения невозможно принять без выборочного обследования. Когда вы уже выпили бутылку, поздно заявлять, что вино непригодно или, напротив, весьма хорошо. Чтобы определить группу крови, врачу незачем выкачивать из вас всю кровь до капли, а президенту не нужно опрашивать всех избирателей, чтобы выяснить желания электората, и не стоит съедать всю капусту на свете, чтобы понять, что она невкусная. Выборка является важнейшим элементом стратегии риска. Мы постоянно используем выборки из настоящего и прошлого, чтобы судить о будущем. «В среднем» — всем знакомое выражение. Но насколько заслуживает доверия то среднее, к которому мы апеллируем? Насколько представительна выборка, изучив которую мы выносим суждение? Вообще, что значит «в среднем»? Статистики шутят, что сидеть на плите с головой в холодильнике в среднем неплохо. Вспомните притчу о слоне и слепых, которые ощупывали его со всех сторон, чтобы понять, что это такое.
Методы статистического выборочного обследования имеют за плечами долгую историю, и нынешние методы существенно совершеннее тех, которые использовали в прошлом. Любопытно использование выборки в процедуре, известной как «испытание ящика» (Trial of the Pyx), которая была впервые проведена в 1279 году по приказу английского короля Эдуарда 1 1. Процедура осуществлялась с целью проверить, соответствуют ли отчеканенные на королевском монетном дворе монеты установленным стандартам по составу золота и серебра. Странное слово рух происходит от греческого слова, обозначающего коробку; в данном случае так именовали ящик, в который клали случайно отобранные монеты, выпущенные монетным двором. В ходе испытаний их сравнивали с королевской золотой пластинкой, которая хранилась в наглухо запертой специальной часовне Вестминстерского аббатства. Поскольку было невозможно добиться абсолютной точности содержания золота в каждой монете, процедура предусматривала определенные допустимые отклонения от стандарта. Более амбициозные и важные попытки применить метод статистической выборки имели место в 1662 году, восемь лет спустя после переписки Паскаля и Ферма (и в год окончательного принятия Паскалем судьбоносного для него решения о существовании Бога). Речь идет о маленькой книжице, опубликованной в Лондоне под названием «Естественные и политические наблюдения, касающиеся свидетельств о смерти» («Natural and Political Observations made upon the Bills of Mortality»). Она содержит данные о рождаемости и смертности в Лондоне с 1604-го по 1661 год и снабжена пространным комментарием, интерпретирующим эти данные. В истории статистических и социологических исследований она сыграла выдающуюся роль; это был дерзкий и решительный переход к использованию выборочных и вероятностных методов, являющихся основой всех аспектов управления риском — от страхования и измерения экологических рисков до конструирования наиболее сложных производных ценных бумаг. Любопытно, что автор книжицы Джон Грант не был ни статистиком, ни демографом — тогда таких специальностей просто не существовало2. Не был он и математиком, актуарием, ученым, преподавателем университета или политиком. Грант, которому к тому времени исполнилось 42 года, всю свою сознательную жизнь был галантерейщиком, торговавшим пуговицами и прочей мелочевкой. Наверно, он был удачливым бизнесменом, потому что имел достаточно денег, чтобы не ограничивать свои интересы только поставкой товара для застегивания одежды. По свидетельству Джона Эбри, современника и биографа Гранта, он был «весьма оригинальным и преданным ученым занятиям человеком... [который] рано утром, до открытия своей лавки, приходил в рабочий кабинет... всегда готовый к шутке и красноречивый»3. Он состоял в дружеских отношениях с самыми выдающимися интеллектуалами своего времени, включая Уильяма Петти, помогавшего ему в обработке статистических данных о народонаселении. Петти сам был замечательным человеком. Врач по профессии, он побывал таможенным инспектором в Ирландии, профессором анатомии и музыки. Он провернул ряд удачных спекуляций во время войны с Ирландией и был автором книги под названием «Политическая арифметика» («Political Ariphmetic»), которая принесла ему славу основателя современной экономической науки4. Книжица Гранта выдержала по меньшей мере пять изданий и нашла массу последователей как в Англии, так и за ее пределами. В 1666 году Петти опубликовал рецензию на нее в парижском «Journal des Sgavans», и через год подобное обследование было проведено во Франции. Внимание к работе Гранта было столь велико, что король Карл II предложил принять его в члены Королевского общества. Хотя члены Общества без особого энтузиазма отнеслись к предложению принять в свои ряды простого лавочника, король возразил, что, «если бы таких лавочников было побольше, следовало бы, ни минуты не колеблясь, принять их всех», и Грант стал членом Общества. У истоков Королевского общества стоял человек по имени Джон Уилкинс (1617-1672), сначала организовавший клуб избранных блестящих знакомых, которые встречались в его доме в Wadham College5. Образцом для клуба послужили собрания в парижском доме аббата Мерсенна. Усилиями Уилкинса созданный им клуб превратился в первую и самую знаменитую из всех академий, которые стали возникать к концу XVII века; образованная вскоре Французская Академия наук построена по образцу Королевского общества. Позже Уилкинс стал епископом в Чичестере, но более интересен он как автор научной фантастики, украшенной ссылками на вероятность. Одна из его работ, опубликованная в 1640 году, носит многообещающее название «Открытие мира на Луне, или Рассуждение, направленное на доказательство вероятности иного обитаемого мира на этой планете» («The Discovery of the World in the Moone or a discourse tending to prove that 'tis probable there may be another habitable world in that planet»). Кроме того, предвосхищая фантазии Жюля Верна, он работал над конструкцией подводной лодки для плавания подо льдами Северного Ледовитого океана.
Мы не знаем, что побудило Гранта предпринять обследование рождаемости и смертности в Лондоне, но сам он признавался, что ему доставило «большое удовольствие получение многих глубокомысленных и неожиданных выводов из этих несчастных списков смерти... И так приятно сделать что-то новое, даже совсем пустяк»6. Но у него была и серьезная цель: «выяснить, сколько есть людей определенного пола, положения, возраста, религиозной принадлежности, рода занятий, звания и положения и т.д., благодаря чему торговцы и правительство могли бы вести дела с большей уверенностью и определенностью; потому что, если это будет известно, станут известными потребности, и, таким образом, торговцы не будут обольщаться несбыточными надеждами»7. Он очень своевременно первым заговорил о необходимости изучения рынка, одновременно предоставив правительству сведения о числе людей, пригодных к несению военной службы. Информация о рождаемости и смертности долгое время хранилась в приходских церквях, но с 1603 года лондонские городские власти взяли на себя ведение аналогичных еженедельных записей. Такого же рода данные были и в Голландии, где муниципальные власти финансировали городские нужды за счет продажи пожизненной ренты — полисов, выкупаемых сразу, после чего в течение жизни владельцу полиса, а в некоторых случаях и его наследникам периодически выплачивалась определенная полисом сумма. Во французских церквях также велись записи крещений и смертей. Хакинг утверждает, что Грант и Петти не знали о работах Паскаля и Гюйгенса, но «по наущению Божьему, или из любопытства, или на основе коммерческих или государственных интересов подобные идеи появились одновременно у многих»8. Грант выбрал очень подходящий момент для публикации и анализа важной информации о населении Англии. Вряд ли он при этом осознавал, что стал создателем теории выборочных исследований. На самом деле он манипулировал скорее с полным набором данных о смертности, нежели с выборкой. Но примененный им способ рассмотрения наборов данных представлял собой нечто новое. Используемые им методы анализа данных были положены в основу статистической науки9. Слово «статистика» происходит от анализа количественных данных о государстве (state). Грант и Петти могут рассматриваться как создатели этого важного раздела науки. Грант работал в то время, когда Англия из страны с преимущественно сельскохозяйственным производством постепенно превращалась во все более сложное общество с обширными заморскими колониальными владениями и бурно развивающимся бизнесом. Хакинг отмечает, что, пока в основе налогообложения была земельная собственность и площади обрабатываемых земель, никого не волновало, сколько на них живет людей. Например, кадастровая книга Вильгельма Завоевателя от 1085 года, известная как «Книга Страшного суда» («Domesday Book»), включала кадастр земель и стоимость недвижимости, но не содержала сведений о числе стоящих за этим людей. С ростом больших и малых городов стали проводиться переписи. Петти обосновывал важность статистических данных о народонаселении необходимостью учета числа людей, пригодных к военной службе, и числа налогоплательщиков. Самого Гранта, который был в первую очередь дельцом периода великого процветания, кажется, не слишком интересовали политические вопросы. Но были другие факторы, стимулировавшие появление его работы. За два года до опубликования «Наблюдений» был возвращен из Голландии Карл II, где он находился в изгнании. Реставрация избавила англичан от интеллектуальных ограничений, которыми пуританство утомило нацию. Конец абсолютизма и парламентаризм обусловили новое понимание свободы и прогресса в стране. К тому же начался приток громадных богатств из колоний в Америке, Азии и Африке. Исаак Ньютон, которому было тогда 28 лет, заставил людей по-новому посмотреть на планету, на которой они жили. Да и сам Карл II был свободомыслящим жизнерадостным монархом, не требовавшим от своих подданных отказа от радостей жизни. Это было самое подходящее время, чтобы распрямиться и оглянуться вокруг. Грант так и поступил и начал считать.
Хотя его книга представляет интерес для социологов, медиков, политологов и историков, самое главное в ней — использование выборки. Грант заметил, что доступные ему статистические данные содержат только часть сведений о рождаемости и смертности в Лондоне, но это не помешало ему сделать далеко идущие заключения на основе той информации, которая оказалась в его распоряжении. Его метод анализа получил название статистического вывода — т. е. получения глобальной оценки на основе выборки данных; разработка методов оценки вероятности расхождений между установленными на основе выборки и истинным значением измеряемой величины была еще впереди. Основополагающими усилиями Гранта простой процесс сбора информации был превращен в могучий, совершенный инструмент описания окружающего мира — земного и небесного. Сырой исходный материал, который собрал Грант, содержался, как уже сказано, в списках умерших, которые городские власти Лондона стали вести с 1603 года. Случайно год совпал с годом смерти королевы Елизаветы; в этот же год на Лондон обрушилась страшная эпидемия чумы. Доскональное изучение положения дел со здоровьем нации стало особенно актуальным10. В списках указывалась причина смерти и число умерших, и из того же источника Грант почерпнул еженедельные сведения о крестинах детей. На иллюстрации представлен документ за две недели 1665 года1* (Для оценки стоимости жизни служили данные о количестве хлеба, которое можно было купить на пенни. В наше время для этого используют корзину товаров и услуг). Из документа следует, что только за одну неделю с 12 по 19 сентября умерли от чумы 7165 человек и всего четыре из 130 приходов эта болезнь миновала11. Грант, собственно, интересовался причинами смертности, в особенности «такой чрезвычайной и страшной причиной», как чума, и образом жизни людей, живших под постоянной угрозой опустошительных эпидемий. В документах, относящихся к 1632 году, например, он нашел около шестидесяти разных причин смерти и 628 смертей под рубрикой «старость». В качестве причин встречаются «испуг», «укус бешеной собаки» (по одному случаю), «глисты», «гнойное воспаление в горле» и «смерть от голода в колыбели». В 1632 году было только 7 убийств и 15 самоубийств. В том, что в Лондоне наблюдалось «так мало убийств... в то время как в Париже не проходит ночи без трагедии», Грант усматривает заслугу правительства и лондонской городской стражи. Он также отмечает «естественное, свойственное большинству англичан отвращение к этому бесчеловечному преступлению и любому кровопролитию» и добавляет, что даже «узурпаторы» во время английской революции казнили только очень немногих соотечественников. Грант приводит данные о смерти от чумы по годам; одним из худших был 1603 год, когда в 82% случаев хоронили жертв чумы. С 1604-го по 1624 год он насчитал 229 250 умерших от разных болезней и несчастных случаев, из них около трети от детских болезней. Подсчитав, что детская смертность составляет 50% смертности по причине болезней, он заключает, что «около 36% детей умирают в возрасте до шести лет». Менее 4000 умерли от «наружных болезней, таких, как рак, свищ, раны, язвы, ушибы и переломы, парша, ожоги, проказа, оспа, венерические заболевания и т. д.».
Грант предполагает, что превалирование острых и эпидемических заболеваний может объясняться «особенностями страны, климатическими условиями, состоянием воздуха... так же как и питанием». Он отмечает, что очень немногие голодают и что нищие, «снующие по городу... по большей части производят впечатление здоровых и сильных людей». Он рекомендует властям задерживать их и приучать к труду «каждого в соответствии с его особенностями и способностями». Обсудив распространенность несчастных случаев, большинство которых, по его мнению, связано с профессиональной деятельностью, Грант обращается к «одной болезни из наших списков, о которой много говорят, и всё без толку». Речь идет о French-Pox — разновидности сифилиса, «обусловленной в большинстве случаев не столько невоздержанностью (которая скорее является причиной истощения), сколько изобилием женщин легкого поведения»2). Грант удивляется, почему в записях зафиксировано так мало смертей от этой болезни, в то время как «множество мужчин время от времени заражаются различными разновидностями этой болезни». Он заключает, что за многими записями о смерти от язв и болячек скрываются смерти от венерических заболеваний. По мнению Гранта, человек должен ужасно опуститься, чтобы власти назвали истинную причину смерти: «только относительно презираемых и покойников с провалившимися носами... признавали причиной смерти эту слишком частую болезнь». Хотя списки умерших представляли собой богатый фактический материал, Грант отдавал себе отчет в неполноте данных, с которыми работал. Он предупреждал о недостоверности медицинских заключений, «потому что даже самые сведущие прихожане в состоянии опознать всего несколько причин смерти на основе простого осмотра мертвого тела». Кроме того, только крещенные в англиканских церквях подлежали регистрации, а католики и диссиденты в поле зрения исследователя не попадали.
Дата добавления: 2014-11-06; Просмотров: 362; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |