Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интегралы и интегральные теоремы




Дифференциальные операции.

Элементы теории поля.

Криволинейные интегралы.

Тройные интегралы.

6.2.1.Найти , если тело V ограниченно плоскостями и .

6.2.2.Найти объем тела, ограниченного поверхностями .

6.3.1.Вычислить , где , , а контур С образован линиями , : а) непосредственно; б) по формуле Грина.

6.3.2.Вычислить , где контур С является одним витком винтовой линии:

.

 

7.1.1.В точке составить уравнение касательной прямой и нормальной плоскости к кривой

 

.

 

7.1.2.Найти в точке градиент скалярного поля

.

7.1.3.Найти в точке дивергенцию векторного поля

.

7.1.4.Найти в точке ротор векторного поля

.

7.2.1.Убедиться, что поле потенциально, и найти его потенциал.

7.2.2.Даны поле и цилиндр D, ограниченный поверхностями z=0, z=m, x2+y2=(n+1)2. Найти:

а) поток поля через боковую поверхность цилиндра в направлении внешней нормали;

б) поток поля через всю поверхность цилиндра в направлении внешней нормали непосредственно и с помощью теоремы Остроградского – Гаусса.

7.2.3. Даны поле и замкнутый виток , (обход контура происходит в направлении, соответствующем возрастанию параметра φ). Найти циркуляцию поля вдоль контура γ непосредственно и с помощью теоремы Стокса.

 




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 310; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.