КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Кинематическое исследование механизмов аналитическими методами
(выполняется по указанию преподавателя) Кинематическое исследование механизмов методом построения планов скоростей и ускорений позволяет определить с достаточной точностью величину и характер изменения кинематических параметров механизма. Однако построение планов скоростей и ускорений для нескольких положений механизма за весь цикл значительно увеличивает объем проводимой работы, особенно для сложных механизмов. Кроме того, при этом методе значительно усложняется процесс оптимизации кинематических параметров, из-за необходимости многократных построений планов скоростей и ускорений. При использовании вычислительной техники для кинематического исследование механизмов необходимо иметь аналитические зависимости искомых параметров, позволяющие определять их за весь цикл в соответствии с изменениям обобщенных координат. Одним из методов аналитического исследования кинематики механизмов является метод замкнутых векторных контуров, предложенный В.А. Зиновьевым [ ]. При кинематическом исследовании механизмов этим методом каждое звено механизма представляется в виде вектора определенного направления. Рассмотрим этот метод на примере кривошипно-ползунного механизма (рис.5), в котором кривошип ОА является вектором , а шатун АВ вектором . Рис.5 Расчетная схема кривошипно-ползунного механизма
Положение точки B в системе координат xoy обозначено вектором Условие замкнутости векторов при принятом направлении векторов и : (3) Углы и соответственно определяют положение векторов и в выбранной системе координат. Спроектируем эти векторы на оси координат:
(4) (5)
Одной из основных задач в данном случае является нахождение функции изменения кинематических параметров механизма при изменении обобщенной координаты . Как следует из уравнения (5): (6) Обозначим - параметр механизма, который в кривошипно-ползунных механизмов транспортных машин изменяется в пределах и определяет их габариты. С учетом формула (6) примет вид: (7)
Продифференцируем уравнение (5) по времени при условии . (8) Из уравнения (8) определим угловую скорость шатуна: (9)
Для определения углового ускорения шатуна продифференцируем уравнение (8): Откуда следует: (10)
Направление угловых скоростей и ускорений определяется по соответствии их знака принятому положительному направлению отсчета углов и . В соответствии с (7) формулу (4) представим в виде:
Чтобы избавиться от радикала разложим его в бесконечный ряд Маклорена: Этот ряд быстро сходится и для практических расчетов при достаточно использовать два первых члена. Величина третьего члена при и составляет или 0,05% от единицы. Таким образом, положение точки B можно приближенно, но с достаточной степенью точности определить по формуле: (11)
Продифференцировав дважды уравнение (11) получим также приближенные формулы для определения скорости точки B: (12) и соответственно ускорения: (13) Точное значения ускорения представляется в виде бесконечного тригонометрического ряда: , коэффициенты, которого определяются в зависимости от величины . В частности, при коэффициент = 0,254, т.е. незначительно отличается от . Для других значений параметра коэффициенты также незначительно отличаются от его величины, что подтверждает возможность использования формул (12) и (13) при различных . Определим экстремальные значения ускорения точки B. Для этого продифференцируем уравнение (13) по независимому переменному и приравняем его к нулю. (14) Уравнение (14) дает возможность определить угол , при котором имеет экстремальные значения.Учитывая, что не равно нулю, и заменив его значениями после преобразования получим: (15) откуда (16)
Из уравнения (15) получим значения угла и . При этих значениях угла имеют место два вида уравнений, определяющих экстремальные значения ускорения : при : при : Уравнение (16) добавляет еще два дополнительных экстремальных значения в соответствии с формулой: Так как , то это уравнение справедливо, если . При этом значении получается два угла (во второй третьей четвертях), при которых ускорение имеет экстремальные значения. Характер изменения ускорения в зависимости от угла для разных значений параметра показан на (рис.6). При кинематическом исследовании сложного механизма (рис.1), состоящего в общем из двух кривошипно-ползунных механизмов с одним кривошипом, необходимо составить расчетную схему, которая будет зависеть от расположения выбранной системы координат. Рис.6 Кривые ускорения точки В центрального кривошипно-ползунного механизма
Дата добавления: 2014-11-06; Просмотров: 567; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |