КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Стандарт ІЕЕЕ-754
Для представлення чисел з рухомою комою у більшості сучасних комп’ютерів використовується стандарт ІЕЕЕ-754. В попередньому пункті ми розглянули можливі варіанти представлення даних в форматі з рухомою комою. До середини 80-х років в різних комп’ютерах використовувались різні варіанти цього представлення, що суттєво ускладнювало виконання на них тих самих програм. У 1985 році Інститут інженерів електротехніків і радіоелектроніків (ІЕЕЕ) розробив стандарт для чисел з рухомою комою, який офіційно відомий як ІЕЕЕ-754 (1985). Стандарт ІЕЕЕ-754 для чисел з одинарною точністю використовує зміщення 8-роз- рядного порядку на 127. Це ще один спосіб представлення чисел із знаком без використання знаку мінус. Мантиса має 23 біти. Із знаковим розрядом включно повна довжина слова складає 32 біти (рис. 2.13).
0 1 8 9 31
8 бітів 23 біти Рис. 2.13. ІЕЕЕ-754 стандарт для чисел з одинарною точністю Значення числа обчислюється за формулою: число = (-1)s 2Е-127 (1, М). Мантиса представляється в прямому коді без знаку, знак мантиси представляється окремо. Суть нормалізації полягає в тому, що мантиса приводиться до вигляду 1.ххххх, тобто вона знаходиться в межах від 1,000...0 до 1,111...1. Слід зауважити, що оскільки кожна мантиса після нормалізації починається з 1, то нема сенсу зберігати цей розряд, тому він не зберігається разом з числом. Його необхідно просто враховувати під час операцій над числами. Числа з подвійною точністю в стандарті ІЕЕЕ-754 подаються 64-розрядним словом, яке має знаковий розряд, 11-розрядний порядок і 52-розрядну мантису (рис. 2.14). Зміщення порядку дорівнює 1023. 0 1 11 12 63 11 бітів 52 біти Рис. 2.14. ІЕЕЕ-754 стандарт для чисел з подвійною точністю Значення числа обчислюється за формулою: число = (-1)s • 2Е-1023 (1, М). Діапазон чисел, які можуть бути представлені в цьому форматі, показаний на рис. 2.15. Рис. 2.15. Діапазон чисел, які відображаються у форматі за стандартом ІЕЕЕ-754 з подвійною точністю У табл. 2.6 наведено характеристики форматів подання двійкових чисел в стандарті ІЕЕЕ-754 з одинарною та подвійною точністю. Таблиця 2.6
Як числа з одинарною точністю, так і числа з подвійною точністю в стандарті ІЕЕЕ-754 мають для нуля два варіанти представлення. Коли порядок і мантиса рівні нулю - число є нулем. При цьому значення знаку є несуттєвим. На цю обставину потрібно звертати увагу при проведенні операції порівняння числа з рухомою комою на збіжність з нулем. Стандарт ІЕЕЕ-754 передбачає використання певної кількості значень мантиси та порядку для представлення нескінчених, невизначених та малих значень. Так мінус та плюс нескінченість пода'ються максимальним значенням порядку (З778 для числа з одинарною точністю та 3777g для числа з подвійною точністю) та нульовою мантисою. Для представлення невизначеного значення також використовується максимальне значення порядку та ненульова мантиса. Невизначене значення називають “не числом” - Not a Number (NaN). “Не число” використовується, щоб представити значення, яке не є дійсним числом і часто використовується як індикатор помилки, наприклад, коли відбулося ділення 0 на 0. Якщо число є дуже малим, то воно представляється нульовим порядком та ненульовою мантисою. У табл. 2.7 наведено приклади представлення різних величин в форматі за стандартом ІЕЕЕ-754 для чисел з одинарною та подвійною точністю.
Таблиця 2.7
Тут знаком? позначено несуттєве значення, а (1) - значення, яке не зафіксовується елементами пам’яті комп’ютера.
Дата добавления: 2014-11-06; Просмотров: 707; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |