КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Числовые характеристики безотказности невосстанавливаемых объектов
Рассмотренные выше функциональные показатели надежности P(t), Q(t), f(t) и (t) полностью описывают случайную величину наработки T = {t}. В то же время для решения ряда практических задач надежности бывает достаточно знать некоторые числовые характеристики этой случайной величины и, в первую очередь, среднюю наработку до отказа. Статистическая оценка средней наработки до отказа
где ti – наработка до отказа i-го объекта. При вероятностном определении средняя наработка до отказа представляет собой математическое ожидание (МО) случайной величины T и определяется:
Используя выражение для плотности распределения отказов и интегрирование по частям, можно преобразовать (2) к виду
с учетом того, что P(0) = 1, P() = 0. Из (3) следует, что средняя наработка до отказа геометрически интерпретируется как площадь под кривой P(t) – рис.4.1.
Рис.4.1
Очевидно, что с увеличением выборки испытаний N средняя арифметическая наработка (оценка 0) сходится по вероятности с МО наработки до отказа. МО наработки T0 означает математически ожидаемую наработку до отказа однотипных элементов, т. е. усредненную наработку до первого отказа. На практике также представляют интерес условные средние наработки: 1) средняя полезная наработка () определенная при условии, что при достижении наработки t1 все оставшиеся работоспособными объекты снимаются с эксплуатации; 2) средняя продолжительность предстоящей работы () при условии, что объект безотказно работал на интервале (0, t1). Причины использования этих показателей: 1. Высоконадежные объекты (элементы электронных схем), как правило, эксплуатируются меньший срок чем T0 (tэкс < T0), т. е. заменяются по причине морального старения раньше, чем успевают наработать T0. 2. Часто для указанных объектов сокращают период испытаний (проводят до наработок соответствующих их моральному старению), поэтому T0 в таком случае понимают как среднюю наработку, которая имела бы место в действительности, если бы ИО оставалась такой, какой она была в начальный период испытаний. Средняя полезная наработка (по аналогии с T0): Средняя продолжительность предстоящей работы Графические понятия и T0 | t > t1 иллюстрируются рис. 2. Рис.4.2 В то же время средняя наработка не может полностью характеризовать безотказность объекта. Так при равных средних наработках до отказа T0 надежность объектов 1 и 2 может весьма существенно различаться (рис. 3). Очевидно, что в виду большего рассеивания наработки до отказа (кривая ПРО f2 (t) ниже и шире), объект 2 менее надежен, чем объект 1. Поэтому для оценки надежности объекта по величине 0 необходимо еще знать и показатель рассеивания случайной величины T = {t}, около средней наработки T0. К числу показателей рассеивания относятся дисперсия и среднее квадратичное отклонение (СКО) наработки до отказа. Рис.4.3
Дисперсия случайной величины наработки: - статистическая оценка
- вероятностное определение
СКО случайной величины наработки:
Средняя наработка до отказа T0 и СКО наработки S имеют размерность [ед. наработки], а дисперсия D - [ед. наработки 2].
Контрольные вопросы: 1. Поясните смысл уравнения связи показателей безотказности? 2. Дайте определение статистической оценки и вероятностного представления средней наработки до отказа? 3. Перечислите условные средние наработки до отказа и поясните необходимость их использования? 4. Дайте определение статистических оценок и вероятностного представления характеристик рассеивания случайной величины наработки. Глава 5. МАТЕМАТИЧЕСКИЕ МОДЕЛИ ТЕОРИИ НАДЕЖНОСТИ. СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ
Дата добавления: 2014-10-15; Просмотров: 529; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |