КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Предел функции
Геометрический смысл предела Определение предела имеет следующий геометрический смысл: число является пределом последовательности , если в любой его - окрестности содержатся почти все члены , или вне этой окрестности находится лишь конечное число членов данной последовательности.
Пример 1. Дана последовательность . Предел этой последовательности , т.е. . Действительно, зададим произвольное число и решим неравенство Этим для всякого найдено число такое, что неравенство выполняется для всех . Пример 2. Дана последовательность . Предел этой последовательности , т.е. . В самом деле, составим неравенство . Оно, как мы видели, выполняется для любого , если .
Число называется пределом функции в точке , если она определена на некоторой окрестности , т.е. на некотором интервале , где , за исключением, быть может, самой точки , и если для всякого можно указать зависящее от него такое, что для всех , для которых , имеет место неравенство . Тот факт, что есть предел в точке , записывают следующим образом Выражение предел функции в точке часто заменяют выражением предел функции при , стремящемся к , или, короче, предел функции при . По аналогии вводят следующее определение. Число есть предел функции при , стремящемся к бесконечности, если определена для всех , удовлетворяющих неравенству при некотором , и для любого можно найти число такое, что для всех , удовлетворяющих неравенству . Многие свойства пределов при , где - конечное число, и при являются аналогичными. Для этого под буквой либо число (конечное), либо символ . Если есть число, то под окрестностью точки понимается любой интервал , содержащий в себе точку . Таким образом, окрестность (конечной) точки есть множество всех точек , удовлетворяющих неравенствам . Если же (или или ), то под окрестностью условимся понимать множество всех , удовлетворяющих неравенству Произвольную окрестность точки обозначают символом .
Дата добавления: 2014-10-15; Просмотров: 451; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |