Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Адсорбция жидкости




Адсорбция на поверхности твердого тела, граничащего с жидкостью, в зависимости от природы адсорбтива и адсорбента и механизма процесса может быть молекулярной, ионной и ионообменной. Молекулярная адсорбция осуществляется из растворов, а адсорбтивом являются молекулы растворенного вещества. К разновидностям молекулярной адсорбции относится адсорбция ПАВ.

В случае адсорбции на границе раздела Т–Ж уравнение (4.10) можно представить в следующем виде:

, (6.12)

где σТЖ– межфазовое поверхностное натяжение на границе раздела твердое тело – жидкость.

При формировании адсорбционного слоя из молекул одного вещества изменение поверхностного натяжения в соответствии с фундаментальным уравнением адсорбции Гиббса (4.14) можно представить таким образом:

ΔσТЖ= – ГΔμ ТЖ. (6.13)

В результате адсорбции ПАВ происходит снижение поверхностного натяжения.

Адсорбция ПАВ на границе раздела твердое тело – жидкость имеет много общего с адсорбцией ПАВ на границе жидкости с газом (см. рис. 5.2), но характеризуется некоторыми особенностями. Общность заключается в том, что уравнения Генри, Фрейндлиха, Ленгмюра [см. уравнения (4.24), (4.25) и (4.34)], а также правило Траубе—Дюкло [см. условие (5.13)] справедливы для всех случаев адсорбции ПАВ (в том числе и на границе твердого тела с жидкостью). Например, значения коэффициентов уравнения Фрейндлиха в случае адсорбции уксусной кислоты (которая обладает поверхностно-активными свойствами) на активированном угле составляют k = 2,99 и 1/n = 0,52.

Адсорбцию на порошкообразном адсорбенте можно выразить количественно с учетом концентрации растворенного вещества. Если в раствор объемом V с первоначальной концентрацией ПАВ или какого-либо другого вещества с0поместить пористый порошкообразный адсорбент, например активированный уголь массой m, то часть ПАВ из раствора будет адсорбироваться на твердой поверхности. В результате концентрация вещества в растворе снизится и станет равной с. Снижение концентрации на величину с0–с произошло в результате адсорбции ПАВ на поверхности адсорбента, величину избыточной (гиббсовской) адсорбции можно определить по формуле

(6.14)

Адсорбция будет выражаться в моль/кг, если с имеет размерность моль/м3, V – м3, а m – кг.

Уравнение (6.14) используют для определения количества ПАВ, адсорбируемого на поверхности твердого тела.

В отличие от адсорбции ПАВ на границе Ж–Г ориентация адсорбционного слоя молекул ПАВ зависит от свойств адсорбата и адсорбента. На границе вода — воздух (см. рис. 5.2, б) молекулы ПАВ ориентированы всегда одинаково: гидрофильной полярной частью к воде, а гидрофобным углеводородным неполярным радикалом – к воздуху

Ориентация молекул ПАВ на границе раздела твердое тело — жидкость происходит в соответствии с правилом уравнивания полярности Ребиндера. Рассмотрим пример, который показан на рис. 6.4, а. На границе раздела неполярного твердого тела, каковым является уголь, с водой — полярной жидкостью — адсорбционный слой молекул ПАВ ориентирован гидрофильной частью в сторону жидкости. Гидрофильную часть молекул ПАВ составляет полярный радикал (см. рис. 5.1), имеющий дипольный момент. Адсорбционный слой молекул ПАВ экранирует твердую поверхность и сообщает этой поверхности полярные свойства.

Таким образом, граница раздела неполярное твердое тело – полярная жидкость в результате адсорбции заменяется на границу раздела полярная часть адсорбционного слоя на твердой поверхности — полярная жидкость. Происходит уравнивание полярности фаз: из неполярно-полярной граница раздела становится полярно-полярной.

Уравнивание полярности фаз имеет место и во втором случае (см. рис. 6.4, б), когда гидрофильная полярная поверхность твердого тела, например диоксида кремния, контактирует с неполярной жидкостью — бензолом. Слой молекул ПАВ в данном случае ориентирован противоположным образом — гидрофобная, неполярная углеводородная часть его обращена в сторону неполярного бензола, а гидрофильная — в сторону полярной твердой поверхности диоксида кремния. Первоначальная граница полярное твердое тело — неполярная жидкость в результате адсорбции заменяется на неполярный адсорбционный слой твердой поверхности — неполярная жидкость. Ориентация адсорбционного слоя зависит не только от полярности гидрофильной части молекул ПАВ, но и от полярности твердого тела и жидкости, в которой растворены ПАВ. Мерой полярности гидрофильной части молекул ПАВ, твердого тела и жидкости является дипольный момент, а полярность молекулы в целом определяет диэлектрическая проницаемость.

Рис. 6.4. Строение адсорбционного слоя молекул ПАВ:

а — неполярное тело (уголь) — полярная жидкость (вода);
б — полярное тело (диоксид кремния) — неполярная жидкость (бензол)

Согласно правилу Ребиндера для ориентации адсорбционного слоя, которая соответствует рис. 6.4, а, необходимо, чтобы соблюдалось следующее соотношение между диэлектрической проницаемостью жидкости εЖ, ПАВ εПАВи адсорбента (твердого тела) εТ:

εЖ> εПАВ> εТ. (6.15)

Для примера, приведенного на рис. 6.4, a условие (6.15) означает, что диэлектрическая проницаемость воды должна быть больше диэлектрической проницаемости гидрофильной части молекул ПАВ, которая, в свою очередь, должна превышать диэлектрическую проницаемость твердого адсорбента, т.е. угля. При 293 К диэлектрическая проницаемость воды εЖравна 81,8, а угля εТ. — 5,7. Из условия (6.15) следует, что адсорбция и формирование адсорбционного слоя возможны в случае, когда диэлектрическая проницаемость гидрофильной части молекул ПАВ будет меньше 81,8 и больше 5,7.

Активированный уголь – это типичный гидрофобный адсорбент. Цеолиты и фильтрующие дисперсные материалы представляют собой гидрофильные адсорбенты, механизм адсорбции на поверхности которых соответствует рис. 6.4, б.

Адсорбция ПАВ на твердой поверхности происходит самопроизвольно, приводит к снижению свободной поверхностной энергии и одновременно вызывает снижение прочности твердого тела. Адсорбционное понижение прочности твердых тел было открыто нашим соотечественником, академиком П.А.Ребиндером и по его имени называется эффектом Ребиндера. Этот эффект не связан с коррозией, растворением твердого тела и другими побочными явлениями, а вызван исключительно адсорбцией ПАВ. Еще в 1928 г. автор эффекта обнаружил снижение прочности некоторых неорганических кристаллов (гипса, графита, ВаСО3, монокристаллов кальцита и др.) в растворах олеиновой и масляной кислот, пропилового и других спиртов, являющихся ПАВ.

В основе адсорбционного понижения прочности лежит соотношение (6.13). Снижение поверхностного натяжения по Ребиндеру можно выразить следующим образом:

(6.16)

где σ0ТЖ, σТЖ— межфазовое поверхностное натяжение жидкости и раствора ПАВ; n – число молекул адсорбата, определяемое по уравнению (4.33); с – концентрация адсорбтива ПАВ.

Снижение поверхностного натяжения обусловливает уменьшение работы, необходимой для образования поверхности раздела фаз и прочности материала, способствует его разрушению. Разрушение можно рассматривать как процесс образования новой поверхности в трещинах и разломах. Адсорбционное понижение прочности происходит тогда, когда ПАВ адсорбируются на внутренней поверхности твердого тела – трещинах, выемах, дефектах структуры и др. Таким образом, необходимым условием проявления эффекта Ребиндера являются наличие трещин и растворов ПАВ в них, а также миграция растворов к вершине развивающейся трещины.

В результате эффекта Ребиндера существенно облегчается процесс деформации и разрушения твердых тел. В промышленности эффект Ребиндера наблюдается при получении дисперсных систем диспергированием (см. параграф 12.2) в цементной, мукомольной, комбикормовой и других отраслях. Он является одним из факторов, позволяющих регулировать структурно-механические свойства дисперсных систем (см. гл. 11).

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 1829; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.