Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Розміщення. Розміщення з повтореннями




Розв’язання

Згідно з правилом добутку з пункту до пункту через пункт веде доріг, а через пункт доріг. Тому за правилом суми кількість доріг з пункту до пункту дорівнює . <

 

Нагадаємо означення впорядкованої множини.

Означення 5.1.1. Множину називають впорядкованою, коли в ній встановлено відношення порядку “менше”, що має такі властивості:

1) : або , або ;

2) .

Означення 5.1.2. Нехай , тобто множина складається з елементів, . Розміщенням без повторень з елементів по називають довільну впорядковану підмножину множини , всі елементи якої різні.

 

Кількість різних розміщень з елементів по без повторень позначають:

.

Два розміщення вважають різними не лише тоді, коли вони відрізняються один від одного хоча б одним елементом, але й тоді, коли вони складаються з однакових елементів, але відрізняються порядком їх розміщення.

Теорема 5.1.1. Кількість -розміщень без повторень з елементів визначається так:

.

Доведення

Перший елемент впорядкованої пари -елементної множини можна вибрати способами, другий – способами. Впорядковану пару за правилом добутку вибирають способами, впорядкована трійка – способами. Продовжуючи цей процес далі, отримаємо:

.

Теорему доведено. <

Теорема 5.1.2. Кількість різних розміщень без повторень з елементів по дорівнює добутку послідовних чисел, більшим з яких є :

.

Приклад. Нехай студенту необхідно скласти чотири екзамени протягом десяти днів. Скількома способами можна це зробити?




Поделиться с друзьями:


Дата добавления: 2014-10-17; Просмотров: 370; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.