Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Структура химии




Предмет химии

Современная химия изучает возможность и условия взаимодействия веществ, а также все, что определяет их химические совйства: состав, внутреннее строение, внешние воздействия. Таким образом, химия – наука о веществах, их строении, свойствах и превращениях.

До конца XIX века химия в основном была целостной единой наукой. Внутреннее ее деление на органическую и неор­ганическую не нарушало этого единства. Но последовавшие вскоре многочисленные открытия, как в самой химии, так и в биологии, физике положили начало быстрой ее дифферен­циации.

Уже к началу XX в. внутри самой химии четко различа­ются общая и неорганическая химия, и органическая хи­мия. Предметом изучения общей и тесно связанной с ней неорганической химии стали химические элементы, образу­емые ими простейшие неорганические соединения и их об­щие законы (прежде всего Периодический закон Д.И. Мен­делеева).

Сильный толчок развитию неорганической химии дали проникновение в недра атома и изучение ядерных процессов. Поиски элементов, наиболее пригодных для расщепления в ядерных реакторах, способствовали исследованию малоизу­ченных и синтезу новых элементов с помощью ядерных ре­акций. Изучением их свойств, а также физико-химических основ и химических свойств радиоактивных изотопов, мето­дикой их выделения и концентрации занялась радиохимия, возникшая во второй четверти XX в.

В XX в. многие разделы органической химии стали по­степенно превращаться в большие, относительно самостоя­тельные ветви со своими объектами изучения. Так появи­лись химия элементоорганических соединений, химия по­лимеров, химия высокомолекулярных соединений, химия антибиотиков, красителей, душистых соединений, фарма­кохимия и т.д.

В конце XX в. возникает химия металлоорганических со­еди нений, то есть соединений, содержащих одну (или бо­лее) прямую связь металла с углеродом. До окончания века были открыты органические соединения ртути, кадмия, цин­ка, свинца и др. В настоящее время получены углеродистые соединения со значительным содержанием не только метал­лов, но и неметаллов (фосфор, бор, кремний, мышьяк и т.д.). Теперь эту область химии стали называть химией элементо­органических соединений, она находится на стыке органи­ческой и неорганической химии.

Самостоятельной областью химии является наука о мето­дах определения состава вещества — аналитическая химия. Ее основная задача — определение химических элементов или их соединений, входящих в состав исследуемого вещества, — решается путем анализа. Без современных методов анализа был бы невозможен синтез новых химических соединений, эффективный постоянный контроль за ходом технологиче­ского процесса и качеством получаемых продуктов.

В сфере соприкосновения физики и химии возник и ус­пешно развивается такой сравнительно молодой раздел из числа основных разделов химии как физическая химия, ко­торая оформилась в конце XIX в. в результате успешных попыток количественного изучения физических свойств хи­мических веществ и смесей, теоретического объяснения мо­лекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева (откры­тие Периодического закона), Вант-Гоффа (термодинамика химических процессов), С.Аррениуса (теория электролити­ческой диссоциации) и т.д. Предметом ее изучения стали об­щетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физически­ми свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Сейчас физхимия — это разносторонне разветвленная наука, тесно связывающая физику и химию.

В самой физической химии к настоящему времени выде­лились и вполне сложились в качестве самостоятельных раз­делов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. выделилась также в само­стоятельную науку выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с ин­тенсивной разработкой проблем ядерной энергии возникли и получили большое развитие новейшие отрасли физической химии — химия высоких энергий, радиационная химия (пред­метом ее изучения являются реакции, протекающие под дей­ствием ионизирующего излучения), химия изотопов.

Еще одним свидетельством плодотворности влияния фи­зики на химическую науку является все расширяющееся применение физических методов в химических исследовани­ях. Поразительный прогресс в этой области особенно отчетливо виден на примере спектроскопических методов. Еще совсем недавно из бесконечного диапазона электромагнитных излучений химики использовали лишь узкую область види­мого и примыкающего к нему участков инфракрасного и уль­трафиолетового диапазонов. Открытие физиками явления магнитного резонансного поглощения привело к появлению спектроскопии ядерного магнитного резонанса, наиболее ин­формативного современного аналитического метода и метода изучения электронного строения молекул, и спектроскопии электронного парамагнитного резонанса, уникального мето­да изучения нестабильных промежуточных частиц - свобод­ных радикалов. В коротковолновой области электромагнит­ных излучений возникла рентгеновская и гамма-резонанс­ная спектроскопия, обязанная своим появлением открытию Мессбауэра. Освоение синхротронного излучения открыло новые перспективы развития этого высокоэнергетического раздела спектроскопии.

Казалось бы, освоен весь электромагнитный диапазон, и в этой области трудно ждать дальнейшего прогресса. Однако появились лазеры — уникальные по своей спектральной ин­тенсивности источники — и вместе с ними принципиально новые аналитические возможности. Среди них можно назвать лазерный магнитный резонанс — быстро развивающийся вы­сокочувствительный метод регистрации радикалов в газе. Другая, поистине фантастическая возможность — это штуч­ная регистрация атомов с помощью лазера — методика, основная на селективном возбуждении, позволяющая зарегис­трировать в кювете всего несколько атомов посторонней природы. Поразительные возможности для изучения механизмов радикальных реакций дало открытие явления химической поляризации ядер.

Науки, воз­никшие на стыке биологии, химии и физики: биохимия — наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия — наука о строении, функциях и путях синтеза соединений, составляющих жи­вые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиа­ционная биология.

Крупнейшими достижениями этих разделов химии стали опре­деление химических продуктов клеточного метаболизма (об­мена веществ в растениях, животных, микроорганизмах), установление биологических путей и циклов биосинтеза этих продуктов; был реализован их искусственный синтез, сдела­но открытие материальных основ регулятивного и наслед­ственного молекулярного механизма, а также в значитель­ной степени выяснено значение химических процессов в энер­гетике процессов клетки и живых организмов в целом.

Более столетия назад ученые поняли, что основой исклю­чительной эффективности биологических процессов являет­ся биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. В ней появится новое управление химическими процессами, где начнут применяться принципы, синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые дале­ко превзойдут существующие в нашей промышленности.

В настоящее время уже видны перспективы возникнове­ния и развития новой химии, на основе которой будут созда­ны малоотходные, безотходные и энергосберегающие промыш­ленные технологии.

Сегодня химики пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в буду­щем (не повторяя в точности природу) можно будет построить принципиально новую химию, новое управление химически­ми, процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразовате­лей, использующих с большим КПД солнечный свет, превра­щая его в химическую и электрическую энергию, а также химическую энергию в свет большой интенсивности.

Для освоения каталитического опыта живой природы и реализации полученных знаний в промышленном производ­стве химики наметили рад перспективных путей.

Первый — развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объек­ты живой природы. Этот катализ обогащается приемами, которыми пользуются живые организмы в ферментативных реакциях, а также способами классического гетерогенного катализа.

Второй путь заключается в моделировании биокатализа­торов. В настоящее время за счет искусственного отбора струк­тур удалось построить модели многих ферментов характери­зующихся высокой активностью и селективностью, иногда' почти такой же, как и у оригиналов, или с большей просто­той строения.

Правда, пока все же полученные модели не в состоянии заменить природные биокатализаторы живых систем. На данном этапе развития химических знании проблема эта реша­ется чрезвычайно сложно. Фермент выделяется из живой системы, определяется его структура, он вводится в реакцию для осуществления каталитических функций. Но работает непродолжительное время и быстро разрушается, поскольку является выделенным из целого, из клетки. Цельная клетка со всем ее ферментным аппаратом — более важный объект, чем одна, выделенная из нее деталь.

Третий путь к освоению механизмов лаборатории живей природы связывается с достижениями химии иммобилизо­ванных систем. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорб­ции, которая и превращает их в гетерогенный катализатор и обес­печивает его стабильность и непрерывное действие.

Четвертый путь в развитии исследований, ориентиро­ванных на применение принципов биокатализа в химии и химической технологии, характеризуется постановкой самой широкой задачи — изучением и освоением всего каталити­ческого опыта живой природы, в том числе и формирования фермента, клетки и даже организма. Это ступень, на которой основы эволюционной химии как действенной науки с ее рабочими функциями. Ученые утверждают, что это движение химической науки к принципиально новой химической технологии с перспективой создания аналогов живых систем. Решение названной задачи займет важней­шее место в создании химии будущего.

Задачи современной химии:

· создание безотходных производств и экологически безвредных технологий переработки природного сырья в вещества и материалы, используемые в повседневной практиеской деятельности (металлы, сплавы, топливо, удобрения и др.);

· создание искусственных веществ с заранее заданными свойствами (пластмассы, лекарственные препараты);

· использование энергии химичеких превращений (создание миниатюрных и долговечных источников тока).




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 3671; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.