КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Турбулентное течение
Для турбулентного течения характерно перемешивание жидкости, пульсации скоростей и давлений.
Рис. 8.1. Пульсация скорости в турбулентном потоке
Скорость беспорядочно колеблется около некоторого осреднённого vоср по времени значения, которое в данном случае остается постоянным. Турбулентное течение всегда является неустановившимся, так как значения скоростей и давлений, а также траектория частиц, изменяются по времени. Распределение скоростей при турбулентном течении более равномерное, а нарастание скорости у стенки более крутое, чем при ламинарном течении.
Рис. 8.2. Профили скоростей в ламинарном и турбулентном потоках
Так как при турбулентном течении отсутствует слоистость потока и происходит перемешивание жидкости, закон трения Ньютона в этом случае выражает лишь малую часть полного касательного напряжения. Благодаря перемешиванию жидкости и непрерывному переносу количества движения в поперечном направлении касательное напряжение τ0 на стенке трубы в турбулентном потоке значительно больше, чем в ламинарном. В связи с этим потери энергии при турбулентном течении жидкости в трубах также получаются иными, нежели при ламинарном.
Рис. 8.3. Зависимость
Ввиду сложности турбулентного течения и трудностей его аналитического исследования до настоящего времени для него не имеется достаточно строгой и точной теории. Турбулентное движение в практических расчетах описывают не мгновенными, а осредненными во времени скоростями
где Т – интервал усреднения. Разность Для оценки пульсационных составляющих (добавок) скорости вводят стандарт, равный среднеквадратичному отклонению пульсационных добавок
Степенью (интенсивностью) турбулентности
где R – гидравлический радиус; J – гидравлический уклон. Исследования показывают, что наиболее общие результаты для описания пульсирующих скоростей при турбулентном движении получаются, если в качестве масштаба скоростей принять динамическую скорость
В качестве примера рассмотрим поток жидкости в прямолинейной цилиндрической трубе круглого сечения (осесимметричный поток). Структуру потока в трубе при турбулентном режиме движения обычно представляют в виде приближенной двухслойной схемы (модели). На твердой стенке скорости, в том числе и пульсационные, равны нулю. Вблизи твердой стенки находится очень тонкий слой, в котором преимущественное влияние имеют касательные напряжения, рассчитываемые по закону вязкого трения Ньютона. Поэтому рассматриваемый слой называют вязким подслоем потока. В пределах вязкого подслоя скорость линейно увеличивается от нуля на стенке до некоторого значения на границе слоя. Раньше считали, что в пределах этого тонкого слоя движение полностью ламинарное, пульсации скорости, давления, касательного напряжения в нем отсутствуют и поэтому его называли ламинарным подслоем (пленкой). Остальную часть поперечного сечения трубы считают занятой турбулентным ядром потока, где и происходят интенсивные пульсации скорости и перемешивание частиц жидкости. Уравнения движения, выраженные через осредненные скорости для случая турбулентного неустановившегося движения несжимаемой жидкости носят название уравнений Рейнольдса и имеют вид В проекции на ось х:
Величины типа Основной расчетной формулой для потерь напора при турбулентном течении в круглых трубах является эмпирическая формула, называемая формулой Дарси - Вейсбаха и имеющая следующий вид:
Эта основная формула применима как при турбулентном, так и при ламинарном течении; различие заключается лишь в значениях коэффициента
Дата добавления: 2014-10-31; Просмотров: 739; Нарушение авторских прав?; Мы поможем в написании вашей работы! |