КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общие представления 6 страница
11.5. КСЕНОБИОТИКИ, ПОСТУПАЮЩИЕ В ОРГАНИЗМ В РЕЗУЛЬТАТЕ ПОЛУЧЕНИЯ, ОБРАБОТКИ ИЛИ ХРАНЕНИЯ ПИЩЕВЫХ ПРОДУКТОВ Генетически модифицированные (трансгенные) продукты (ГМП) — это изделия, которые были получены генно-инженерными технологиями. За последнее десятилетие объем производства генетически измененных продуктов в мире резко возрос. В табл. 11.2 приведены некоторые страны мира, возделывающие трансгенные растения. Таблица 11.2 Объем производства ГМП в некоторых странах мира в 2003 г.
Цели, которые преследуют при получении генетически измененных растений, следующие: повышение резистентности к действию вредителей (маис, хлопок, картофель), вирусов (картофель); изменение качественного состава продукта, например по содержанию жирных кислот (рапс, соя), белка (картофель), антиоксидантов (томаты) и др.; изменение внешнего вида растений, например по окраске (гвоздика). Идут интенсивные работы по созданию растений, продуцирующих лекарственные вещества (с помощью табака -гемоглобин, коллаген; с помощью картофеля — интерферон, сывороточный альбумин; с помощью рапса — герудин). Риск для человека состоит в возможном активном или косвенном вмешательстве генетически измененных продуктов в физиологическую и метаболическую активность клеток и тканей человеческого организма со всеми вытекающими отсюда последствиями. Так, например, молоко коров может содержать рекомби-нантный гормон роста (rBGH), известный как рекомбинант-ный бычий соматотропин. Фирменное название Posilac. С 1993 г. этот препарат производится методами генной инженерии. Используется в животноводстве с целью повышения надоев. Препарат вводят животным каждые две недели, вызывая стимуляцию образования молока на 5—20%. Введение rBGH приводит к увеличению вероятности маститов, протекание которых связано с попаданием в молоко патогенных микроорганизмов. Основной способ лечения маститов у животных — введение им антибиотиков. В свою очередь, их использование вызывает повышение устойчивости микроорганизмов, например сальмонелл, что создает трудности в лечении у человека инфекционных заболеваний. Более того, мутантные бактерии могут передавать свои гены другим микроорганизмам. Это происходит путем обмена цепи ДНК, называемой плазмидой. Даже относительно непатогенные бактерии типа Е. coli, присутствующие в кишечнике человека, могут получать невосприимчивость к антибиотику и передавать ее по наследству, а также к другим бактериям, например возбудителям тифа или холеры. Помимо этого, показано, что rBGH увеличивает в организме животных концентрацию инсулиноподобного фактора-1 (IGF-1). IGF-1 состоит из 70 аминокислот и имеет такую же первичную структуру, как человеческий пептид. В присутствии казеина, основного протеина коровьего молока, IGF-1 не подвергается разрушению при пастеризации, а также при пищеварении. Казеин обеспечивает защитный эффект на IGF-1 молока коров, и гормон остается неповрежденным в кишечнике тех людей, которые употребляют молоко после стимуляции животных rBGH. Попав с коровьим молоком в организм человека, rBGH увеличивает в нем уровень собственного IGF-1. Всосавшийся коровий, а также образованный собственный IGF-1 в тонком кишечнике человека способен стимулировать клеточный рост путем изменения подвижности и усиления митотической активности клеток. У животных этот пептид оказывает системные эффекты: увеличивает массу тела, печени, длину трубчатых костей. Помимо этого, IGF-1 вызывает рост опухолей у лабораторных животных и людей путем торможения запрограммированной смерти клетки (апоптоза). Способность индуцировать акромегалию делает IGF-1 потенциально опасным для детей и подростков. У человека это проявляется в увеличении риска появления злокачественных образований молочной железы и толстого кишечника. Помимо этого, IGF-1 обладает эстрогенподобным действием. Еще один пример потенциальной опасности «новых продуктов» — генетически спроектированный помидор Flavr Savr. Это растение содержит ген, который придает стойкость к действию антибиотика канамицина. Этот ген может быть передан бактериям в желудочно-кишечном тракте человека, создавая тем самым новые нечувствительные к антибиотикам микробы, что чревато серьезными последствиями для здоровья.
11.6. ВРЕДНЫЕ ВЕЩЕСТВА, ОБРАЗУЮЩИЕСЯ ПРИ ПРИГОТОВЛЕНИИ ПИЩИ Продукты «реакции Малларда». Возникают между карбонильными группами восстановленных Сахаров и аминогруппами аминов, пептидов и белков. При приготовлении пищи они желательны для придания продукту аромата, определенных вкусовых свойств и специфической окраски. При этом возникают побочные, токсичные и мутагенные продукты. Полициклические ароматические углеводороды (ПАУ). К ПАУ относится бенз[а]пирен, образующийся при копчении продуктов, а также при приготовлении пищи на гриле в том случае, если жир попадает на раскаленный древесный уголь (рис. 11.4). Копченая ветчина может содержать бенз[а]пирена до 3 мкг/кг, приготовленное на гриле мясо до 50 мкг/кг. Допустимое количество для мясных продуктов составляет 1 мкг/кг. Овощи и зерно могут накапливать ПАУ из грунта и воздуха до 20 мкг/кг (суммарное содержание). При питании человек получает ежедневно в сумме только около 3 мкг ПАУ. Повышенное потребление подобных ксенобиотиков может иметь последствия для здоровья человека. Твердо установлено, что бенз[а]пирен обладает в отношении человека и животных мутагенным и канцерогенным действием. ^Гетероциклические амины (ГЦА). В конце 70-х гг. XX в. товлении гамбургеров. Более того, было установлено, что некоторые аминокислоты, такие как триптофан, глютамино-вая кислота, а также содержащие их белки, также могут давать канцерогенные продукты в результате процесса пиролиза (нагревание при высокой температуре). Эти соединения были выделены и обозначены как гетероциклические амины. В настоящее время их известно около 20.
Среди ГЦА выделяют две группы соединений: неимида-зольные и имидазольные. Первая из них содержит аминогруппу, присоединенную непосредственно к пиримидино-вому кольцу (рис. 11.5, а). Вторая группа — это класс имида-золов, у которых аминогруппа присоединена к имидазоль-ному кольцу (рис. 11.5, б). Диметилимидазолхиноксалинамин Метилфенилимидазолпиридинамин б Рис. 11.5. Химические структуры некоторых неимидазольных (а) и ими-дазольных (6) гетероциклических аминов
Рис. 11.6. Образование -мётилфенилимидазолпиридинамина (МФИПА) при термической обработке мяса Образуются ГЦА почти исключительно при кулинарной обработке мяса. Дело в том, что именно в мышечной массе содержится вещество креатин, выполняющее важную роль в энергетическом обеспечении сократительного процесса. В присутствии некоторых аминокислот (например, фенил-аланина) при нагревании образуется метилфенилимидазол-пиридинамин (МФИПА) (рис. 11.6). Углеводы, присутствующие в мясе, способствуют этой реакции. Существует несколько факторов, существенно влияющих на образование ГЦА. Чем выше температура кулинарной обработки и ее продолжительность, тем выше содержание ГЦА в конечном продукте. Показано, что их образование начинается при 150 °С и становится максимальным при 250 °С. Другим фактором является вид кулинарной обработки. Наибольшие количества этих канцерогенов дает поджаривание мяса, а также приготовление барбекю. В то время как варка мяса, тушение, обработка в микроволновой печи вообще не способствуют образованию ГЦА. На рис. 11.7 приведены данные об образовании двух ГЦА при различных видах и продолжительности кулинарной обработки.
□ —ПИА Ш — МФИПА
Среди всего семейства ГЦА, присутствующих в рационе европейских народов, наибольшей потенциальной опасностью обладают пять. В табл. 11.3 показано количественное соотношение упомянутых ГЦА при различных видах кулинарной обработки. В целом установлено, что люди, которые ежедневно едят жареное мясо, получают в день от 1 до 20 мкг ГЦА. Их потребляемые количества уменьшаются в ряду: МФИПА -> ПИА -> ДМИХСА -> ТМИХСА -> МИХА. Метаболизм ГЦА играет важную роль в их канцерогенной способности. Строго говоря, ГЦА являются лишь про-канцерогенами и становятся таковыми в результате их деток
Прежде всего, ГЦА гидроксилируется по месту расположения аминогруппы с образованием N-гидроксиамина. Это происходит, как указывалось ранее, с помощью цитохрома Р-450 (CYP1A2). Образовавшийся продукт на второй стадии метаболизируется до эфира. Ацетопроизводные аминов являются потенциальными электрофилами, способными реагировать с макромолекулами, например с белками и ДНК, что приводит к образованию аддуктов преимущественно с гуанином полинуклеотидной цепочки ДНК. Этим самым изменяется первичная структура ДНК. Если аддукт не будет удален из макромолекулы при ее репарации, то это может послужить толчком к клеточной мутации путем замены гуанина на тимин. Помимо реакций метаболической активации ГЦА способны обезвреживаться без образования активных канцерогенов. Этот процесс происходит путем конъюгации с глюку-роновой или серной кислотами. С ГЦА связывают возникновение злокачественных опухолей кишечника и молочной железы. Высокая вероятность заболеваний раком молочной железы связана с большой активностью упомянутой N-ацетилтрансферазы, одного из ферментов метаболической активации этих соединений. На канцерогенность ГЦА влияют многие факторы, которые способны снизить их воздействие или, наоборот, потенцировать их активность. К числу первых из них относятся хлорофилл, индолы, изотиоцианаты, изофлавонои-ды, полифенолы, которые содержатся в зеленых растениях, овощах и фруктах. При этом грубые волокна и хлорофилл тормозят поглощение ГЦА. Индолы, изотиоцианаты, изофлавоноиды тормозят метаболическую активацию и стимулируют обезвреживание. Природные антиоксиданты (токоферол, каротин), полифенолы, содержащиеся в чае, а также кальций ингибируют прогрессию злокачественно трансформированной клетки, тормозя формирование опухоли. К факторам, которые способны потенцировать активность ГЦА, относится животный жир. Следовательно, богатая жиром пища будет способствовать развитию опухолей. И, наконец, важную роль играют способы приготовления пищи. При этом следует избегать пережаривания мясных продуктов, реже употреблять барбекю. 11.7. ВЕЩЕСТВА, ПРИМЕНЯЕМЫЕ В СЕЛЬСКОМ ХОЗЯЙСТВЕ Медикаменты и кормовые добавки используются и как лекарственные (антибиотики), и как вспомогательные средства. Они могут по пищевой цепочке попадать в организм человека. У людей вырабатывается резистентность к антибиотику могут возникать аллергические реакции. Количество применяемых в сельском хозяйстве антибиотиков колоссально. Подсчитано, что приблизительно половина из 7 тыс. т всех производимых в мире антибиотиков используется в животноводстве. Помимо этих соединений весьма широко применяются половые гормоны (например, эстрадиол, тестостерон). Использование тиреостатиков приводит к увеличению веса животных. Продукт их распада — тиомочевина — является канцерогеном. Глюкокортикоиды (кортизон), р-блока-торы и психофармацевтические средства (например, валиум) дают свиньям в качестве седативных препаратов для предотвращения стресса, и тем самым они также могут попадать в организм человека. Витамины назначаются как лекарственные средства и добавки, которые накапливаются в печени животных (например, витамин А) и вследствие избыточного поступления способны вызывать негативные реакции у людей.
11.8. ТОКСИНЫ, ОБРАЗУЮЩИЕСЯ В ПРОДУКТАХ ПИТАНИЯ. МИКОТОКСИНЫ
Афлатоксины образуются плесневыми грибами (например, Aspergillus flavus). Послед-
ние растут на орехах, пряностях и злаках, которые хранятся во влажных помещениях. Матери могут передавать токсины новорожденным через молоко. Весьма высоко воздействие афлатоксинов на население в развивающихся странах Африки и Азии. Афлатоксины считаются гепатотоксичными и канцерогенными ядами (рис. 11.10). Микотоксин патулин образуется штаммами грибов Penicillum expansion и содержится в испорченных фруктах и соках (рис. 11.11). Грибы растут на прелых фруктах, зерне и орехах. Употребление токсинсодержащего продукта питания может привести у людей к повреждению печени и почек. Известно канцерогенное действие патулина для человека. С микотоксинами человечество сталкивалось с незапамятных времен. Об эрготизме (фр. ergot — спорынья) упоминается еще в Ветхом Завете. Массовые проявления эрготизма имели место уже в 800-х гг. н. э. Наиболее высокая летальность от этого заболевания имела место в XVIII в. В настоящее время острые и хронические виды патологии от мико-токсинов часто встречаются в развивающихся странах. Основная причина этого явле- ния — заражение злаковых (пшеница, ячмень, овес) спорыньей, т.е. грибками из рода Fusarium (Е graminearum, Е culmorum, F. spo- rotrichiod.es). Все перечисленные виды продуцируют трихотеновые микотоксины, главным из которых является 4-диоксиниваленол Рис. 11.12. Структурная фор-(рис. 11.12). Распространенность мула 4-диоксиниваленола его весьма велика. Он обнаруживается в пшенице почти всех стран мира (табл. 11.4). Таблица 11.4 Среднее содержание диоксиниваленола в образцах пшеницы разных стран
На молекулярном уровне этот ксенобиотик способен повреждать мембраны и является сильным ингибитором синтеза белка. Наименее подвержены токсическому действию 4-диоксиниваленола жвачные животные, так как бактерии, содержащиеся у них в рубце, способны разрушать это соединение. Конкретное воздействие состоит в иммунодепрес-сивном эффекте и нефротоксических проявлениях. В конце Второй мировой войны вследствие потребления зараженной пшеницы в бывшем Советском Союзе были отмечены массовые случаи отравления среди населения мико-токсинами в виде алиментарно-токсической алейкии. Симптомы этой патологии проявлялись в том, что вскоре после употребления зараженного зерна люди жаловались на тошноту, рвоту, слабость и тахикардию. После короткого «светлого» промежутка присоединялась прогрессивная лейкопения, анемия и тромбоцитопения. Если употребление хлеба, приготовленного из загрязненного микотоксинами зерна, продолжалось, ведущим симптомом становились петехиаль-ные кровоизлияния на верхней части тела с некрозом в области рта и лица. Вследствие присоединения вторичной инфекции больные погибали, хотя перевод их на питание нор- мальным хлебом мог привести к выздоровлению в течение двух месяцев. Массовые отравления 4-диоксиниваленолом были зарегистрированы в штате Кашмир (Индия) в 1988 г., когда на рынке появилась зараженная пшеница. Подобные случаи имели место в Китае, Японии, Корее. В условиях глобального потепления эта проблема может еще более обостриться.
11.9. МЕТАЛЛЫ Металлы. Металлы находятся в продуктах питания, консервах и посуде (алюминий, олово, медь) и являются причиной различных расстройств. Восемь химических элементов (ртуть, кадмий, свинец, мышьяк, медь, стронций, цинк, железо) объединенный комитет экспертов ФАО/ВОЗ по Codex Alimentarms включил в число компонентов, содержание которых контролируется при международной торговле продуктами питания. Рассмотрим основные из них. Ртуть. Ртуть — это металл, занимающий особое место в истории цивилизации. Добыча золота и величайшие технические достижения в электронике и ядерной технике были бы невозможны без применения этого замечательного металла. В последние десятилетия становится все более очевидным, что ртутная интоксикация значима не только для персонала, работающего в производственных условиях, но и для большинства городского населения. Не случайно, что хронические отравления парами ртути в конце XX в., по мнению медиков, перешли из разряда профессиональных заболеваний в болезнь популяции. Несмотря на огромные усилия, предпринимаемые для замены ртутьсодержащих изделий на более безопасные, полностью избавиться от ее применения человечеству вряд ли удастся. Поэтому у нас нет другой альтернативы, как научиться держать ртуть под контролем и знать, где может подстерегать «ртутная опасность». Ртуть — рассеянный элемент. В атмосферу поступает как в ходе природных процессов (испарение со всей поверхности суши; возгонка ртути из соединений, находящихся на большой глубине в толще земной коры; вулканическая деятельность), так и за счет антропогенной деятельности (пи-рометаллургическое получение металла и все процессы, в которых используется ртуть; сжигание любого органического топлива; цветная металлургия; термические процессы с нерудными материалами и т.п.). Техногенно рассеиваемая ртуть (пары, водорастворимые соли, органические соединения) отличается геохимической подвижностью по сравнению с природными (преимущественно сульфидными, труднорастворимыми, малолетучими) соединениями ртути и поэтому более опасна в экологическом отношении. Поступившие в атмосферу пары ртути сорбируются аэрозолями, почвой, вымываются атмосферными осадками, включаясь в круговорот в почве и воде (ионизируются, превращаются в соли, подвергаются метилированию, усваиваются растениями и животными). В процессе аэрогенной, водной, почвенной и пищевой миграции Hg° превращается в Hg2+. Метилирование неорганической ртути в донных отложениях озер, рек и других водотоков, а также океанов — ключевой этап процесса миграции ртути по пищевым цепям водных экосистем. Были выделены почвенные микроорганизмы, способные метилировать ртуть. Метилирование ртути микроорганизмами подчиняется следующим закономерностям: • преобладающий продукт биологического метилирования ртути при рН, близком к нейтральному, — метилртуть; • скорость метилирования при окислительных условиях выше, чем при анаэробных; • количество образуемой метилртути удваивается при десятикратном увеличении содержания неорганической ртути; • повышенная скорость роста микроорганизмов увеличивает метилирование ртути. Ртуть относится к числу микроэлементов, постоянно присутствующих в теле человека, но не является эссенци-альным микроэлементом. Ртуть отличается высокой токсичностью для любых форм жизни. Токсическое действие ртути зависит от вида соединения: алкилртутные соединения токсичнее неорганических. Наиболее токсичны алкилртутные соединения с короткой цепью — метилртуть, этилртуть. Они больше накапливаются в организме, лучше растворяются в липидах, легче проникают через биологические мембраны. Чувствительность нервной системы к метил- и этилртути выше, чем к другим соединениям. В организм человека ртуть может попадать с продуктами питания растительного и животного происхождения, продуктами моря, атмосферным воздухом и водой. В производственных условиях основное значение имеет поступление ртути в организм через дыхательные пути в виде паров или пыли. Пары ртути полностью задерживаются в дыхательных путях, если концентрация их в воздухе не превышает 0,25 мг/м3. Резорбция ртути в пищеварительном тракте зависит от типа соединения: резорбция неорганических соединений составляет 2—15%, фенилртути — 50—80, метилртути — 90— 95%. Метилртуть стабильна в организме, другие алкилртут-ные соединения быстрее трасформируются в неорганические. При всех путях поступления ртуть накапливается преимущественно в почках, селезенке и печени. Органические соединения, хорошо связываясь с белками, легко проникают через гематоэнцефалический и плацентарный барьеры и накапливаются в головном мозге, в том числе и плода, где их концентрация в 1,5—2 раза больше, чем у матери. В мозговой ткани метилртути содержится в 5—6 раз больше, чем в крови. Поступление ртути в организм отрицательно влияет на обмен пищевых веществ: неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена; органические соединения — обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена. Выведение ртути из организма осуществляется всеми железами желудочно-кишечного тракта, почками, потовыми и молочными железами, легкими. В грудном молоке обычно содержится около 5% от ее концентрации в крови. Неорганические соединения выделяются преимущественно с мочой (период полувыведения из организма — 40 сут), а органические соединения на 90% выделяются с желчью и калом (период полувыведения из организма — 76 сут). Из организма новорожденных ртуть выделяется медленнее, чем у взрослых. Она выводится из организма неравномерно. По мере выделения ртуть мобилизуется из депо. По-видимому, различные стрессовые ситуации стимулируют мобилизацию ртути, с чем связывают периодические обострения при хроническом меркуриализме. Ртуть накапливается преимущественно в ядре клетки, остальные субклеточные структуры по содержанию ртути располагаются в следующем порядке: микросомы, цитоплазма, митохондрии. Повреждающее действие ртути распространяется на все субклеточные структуры. В основе механизма действия ртути лежит блокада биологически активных групп белковой молекулы (сульфгидрильных, аминных, карбоксильных и др.) и низкомолекулярных соединений с образованием обратимых комплексов, характеризующихся нук-леофильными лигандами. Установлено включение ртути (Hg2+) в молекулу транспортной РНК, играющей центральную роль в биосинтезе белков. В начальные сроки воздействия малых концентраций ртути имеет место значительный выброс гормонов надпочечников и активирование их синтеза. Наблюдается возрастание моноаминооксидазной активности митохондриаль-ной фракции печени. Установлено стимулирующее действие неорганических соединений ртути на развитие атеросклероза, но эта связь нерезко выражена. Пары ртути проявляют нейротоксичность, от чего особенно страдают высшие отделы нервной системы. Вначале возбудимость коры больших полушарий повышается, затем возникает инертность корковых процессов. В дальнейшем развивается запредельное торможение. Неорганические соединения ртути обладают нефроток-сичностью. Есть сведения о гонадотоксическом, эмбриоток-сическом и тератогенном действии соединений ртути. Основные проявления хронического воздействия малых концентраций ртути следующие: повышенная нервозность, ослабление памяти, депрессивное состояние, парестезии на конечностях, мышечная слабость, эмоциональная лабильность, нарушение координации движений, симптомы поражения почек. К данной симптоматике могут присоединяться признаки поражения сердечно-сосудистой системы — аномальное повышение артериального давления, тахикардия, изменение электрической активности (ЭКГ). Все эти явления обусловлены воздействием ртути на энзиматиче-скую активность в клетках, увеличением концентрации внутриклеточного кальция, ингибированием синтеза ДНК и РНК, нарушением цитоархитектоники микротрубочек, блокированием нейрорецепторов, ПОЛ в мембранах клеток мозга. Болезнь Минамата — ртутная интоксикация алиментарного происхождения, обусловленная употреблением в пищу рыбы и других гидробионтов, выловленных из водоемов, загрязненн ых ртутью (Япония) (см. гл. 9). Во многих странах мира отмечена сходная клиническая картина алиментарных ртутных интоксикаций, обусловленных употреблением протравленного ртутьорганическими соединениями посевного зерна, хлебобулочных изделий из него, а также мяса скота, получавшего это зерно с кормом. Латентный период данных заболеваний в зависимости от суточной дозы метилртути, поступившей в организм человека, составлял от 1—2 дней до нескольких недель. Есть сообщения о защитном воздействии цинка и селена при поступлении в организм ртути. Защитное действие селена (в том числе содержащегося в рыбных продуктах, например в тунце) усматривают в деметилировании ртути с образованием нетоксичного селенортутного комплекса. Токсичность неорганических соединений ртути снижают аскорбиновая кислота и медь при их повышенном поступлении в организм, а органических соединений — протеины, цистеин, токоферолы. Пиридоксин, особенно при избыточном введении в организм, усиливает токсичность ртути. При изучении болезни Минамата установлено, что под-пороговая суточная доза метилртути (по ртути) равняется 4 мкг/кг массы тела, т.е. около 0,3 мг для взрослого человека. Комитет экспертов ФАО/ВОЗ по пищевым добавкам, основываясь на расчетах с применением коэффициента безопасности 10, пришел к выводу, что поступление ртути в организм взрослого человека не должно превышать 0,3 мг в неделю и 0,05 мг в сутки, из которых не более 0,03 мг может составлять метилртуть. По данным ВОЗ, признаки интоксикации метилртутью у наиболее чувствительных к ней людей появляются тогда, когда концентрация ртути в крови превышает 150 мкг/л. Максимально безопасным для взрослого человека уровнем ртути в крови считается 100 мкг/л. Фоновое содержание ртути в волосах — 10—20 мкг/г, безопасным уровнем ртути в волосах считают 30—40 мкг/г. Содержание ртути в моче больше 10 мкг/сут свидетельствует о возможной опасности хронического отравления, а 50 мкг/сут, при наличии соответствующей симптоматики, служит подтверждением диагноза микромеркуриализма. Медь. Медь — микроэлемент, широко распространенный в природе. Средние концентрации меди в воде рек и озер составляют 7 мкг/л, в океанах — 0,9 мкг/л. Важная роль в процессе миграции меди в гидросфере принадлежит гидро-бионтам; некоторые виды планктона концентрируют медь в 90 тыс. раз выше. Содержание меди в почвах составляет в среднем 15—20 мг/кг. Биологическая роль меди — она входит в состав гемато-купреина и других порфиринов животного мира, металло-ферментов, например цитохромоксидазы, лизилоксидазы. Последняя осуществляет формирование поперечных сшивок между полипептидными цепями коллагена и эластина. Недостаток меди приводит к образованию дефектного коллагена, что увеличивает вероятность разрыва стенок артерий. Дефицит меди может привести к анемии, незначительному замедлению физического развития детей, увеличению частоты сердечно-сосудистых заболеваний.
Дата добавления: 2014-10-31; Просмотров: 518; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |