![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Плоскость в пространстве
Уравнение поверхности и линии в пространстве. Аналитическая геометрия в пространстве. Определение. Пусть в прямоугольной системе координат OXYZ координаты x, y, z связаны уравнением F(x,y,z) = 0 (1.1). Любое уравнение, связывающее координаты x, y, z (1.1.), является уравнением поверхности S в заданной системе координат, если ему удовлетворяют координаты любой точки M(x,y,z), принадлежащей S и не удовлетворяют координаты никакой точки, не лежащей на этой поверхности.
Линию в пространстве L можно рассматривать как линию пересечения двух поверхностей, каждая из которых задана каким- либо уравнением. Пусть F(x, y, z) = 0 и Ф(x, y, z) = 0 – уравнения поверхностей, пересекающихся по линии L. Тогда систему двух уравнений назовем уравнением линии L в пространстве.
Пусть Р – произвольная плоскость в пространстве. Точка М0(x0, y0, z0) Î Р. Вектор Необходимо получить уравнение плоскости. Решение. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор
Таким образом, получаем уравнение плоскости
Уравнение (5.1) называют уравнением плоскости, проходящей через заданную точку. Легко показать, что уравнение (5.1) приводится к виду: Ax + By + Cz + D = 0 – уравнение 1-ой степени относительно переменных координат х, у, z (D = -Ax0 – By0 – Cz0). Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0, (5.2)
где А, В, С – координаты вектора Рассмотрим особенности расположения плоскости в тех случаях, когда те или иные коэффициенты уравнения (5.2) обращаются в нуль. Частные случаи общего уравнения плоскости:
Дата добавления: 2014-10-31; Просмотров: 472; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |