КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Плоскость в пространстве
Уравнение поверхности и линии в пространстве. Аналитическая геометрия в пространстве. Определение. Пусть в прямоугольной системе координат OXYZ координаты x, y, z связаны уравнением F(x,y,z) = 0 (1.1). Любое уравнение, связывающее координаты x, y, z (1.1.), является уравнением поверхности S в заданной системе координат, если ему удовлетворяют координаты любой точки M(x,y,z), принадлежащей S и не удовлетворяют координаты никакой точки, не лежащей на этой поверхности.
Линию в пространстве L можно рассматривать как линию пересечения двух поверхностей, каждая из которых задана каким- либо уравнением. Пусть F(x, y, z) = 0 и Ф(x, y, z) = 0 – уравнения поверхностей, пересекающихся по линии L. Тогда систему двух уравнений назовем уравнением линии L в пространстве.
Пусть Р – произвольная плоскость в пространстве. Точка М0(x0, y0, z0) Î Р. Вектор = (A,B,C) –ненулевой вектор, перпендикулярный плоскости Р (нормальный вектор плоскости)
Необходимо получить уравнение плоскости. Решение. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору . Тогда скалярное произведение × = 0 Таким образом, получаем уравнение плоскости (5.1) Уравнение (5.1) называют уравнением плоскости, проходящей через заданную точку. Легко показать, что уравнение (5.1) приводится к виду: Ax + By + Cz + D = 0 – уравнение 1-ой степени относительно переменных координат х, у, z (D = -Ax0 – By0 – Cz0). Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0, (5.2)
где А, В, С – координаты вектора - вектор нормали к плоскости. Рассмотрим особенности расположения плоскости в тех случаях, когда те или иные коэффициенты уравнения (5.2) обращаются в нуль. Частные случаи общего уравнения плоскости:
Дата добавления: 2014-10-31; Просмотров: 472; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |