КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Окружность
Уравнение вида Ах2 + Вху + Су2 + Dx + Ey + F = 0, где хотя бы одна из трех величин А, В или С не равна нулю, называется уравнение второго порядка, а линия, представляемая таким уравнением – линией второго порядка. Существует система координат (не обязательно декартова прямоугольная), в которой данное уравнение может быть представлено в одном из видов, приведенных ниже. 1) - уравнение эллипса. 2) - уравнение “мнимого” эллипса. 3) - уравнение гиперболы. 4) a2x2 – c2y2 = 0 – уравнение двух пересекающихся прямых. 5) y2 = 2px – уравнение параболы. 6) y2 – a2 = 0 – уравнение двух параллельных прямых. 7) y2 + a2 = 0 – уравнение двух “мнимых” параллельных прямых. 8) y2 = 0 – пара совпадающих прямых. 9) (x – a)2 + (y – b)2 = R2 – уравнение окружности. Определение. Окружностью называется множество всех точек плоскости, находящихся на одинаковом расстоянии, называемом радиусом, от фиксированной точки, называемой центром окружности.
Выведем уравнение окружности радиуса R с центром в точке С(х0, у0). Для любой точки М(х, у) окружности имеем СМ = R или СМ2 = R2. Отсюда и получаем уравнение окружности: (х — х0)2 + (у — у0)2 = = R2. (3.1) Если центр окружности расположен в начале координат, т.е. х0 – 0, у0= 0, то уравнение окружности имеет простейший вид и называется каноническим: x2 + y2 = R2. (3.2) Пример. Найти координаты центра и радиус окружности, если ее уравнение задано в виде: 2x2 + 2y2 – 8x + 5y – 4 = 0.
Для нахождения координат центра и радиуса окружности данное уравнение необходимо привести к виду, указанному выше в п.9. Для этого выделим полные квадраты:
Дата добавления: 2014-10-31; Просмотров: 330; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |