Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Умножение матриц




Произведением матрицы А = (аij) n´m на матрицу В = (bij) m ´ p называется матрица С = А´ В = (сij) n ´ p, построенная по правилу

 

Практически перемножение матриц осуществляется следующим образом: берут i- ю строку матрицы А, умножают ее поэлементно на j -й столбец матрицы В и эти произведения складывают. Полученное число является элементом матрицы С, стоящим в i -й строке и j- м столбце.

Пример. Найдем произведение матриц АВ, если

 

Внимание:

а) матрица А имеет порядок n ´ m, матрица В имеет порядок m ´ p, а их произведение АВ - порядок n ´ p;

б) в общем случае АВ ¹ ВА.

 

Примеры.

а) Найдем ВА, где матрицы А и В взяты из предыдущего примера:

 

 

б) Найдем значение матричного многочлена В = 2 А 2 + 3 А + 5 Е, где

 

- единичная матрица третьего порядка.

Имеем

тогда

 

 




Поделиться с друзьями:


Дата добавления: 2014-10-31; Просмотров: 442; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.