КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Полярная система координат
Говорят, что на плоскости введена полярная система координат, если заданы: 1) некоторая точка 0, называемая полюсом; 2) некоторый луч, исходящий из точки 0 и называемый полярной осью. Полярными координатами точки M называются два числа: полярный радиус и полярный угол - угол между полярной осью и вектором . Пусть на плоскости введены декартова и полярная системы координат, причем начало декартовой системы совпадает с полюсом, а полярная ось - с положительной полуосью абсцисс. Тогда прямоугольные координаты x, y точки М и ее полярные координаты ρ, φ связаны следующими формулами: , , Задание 4. Линия задана уравнением в полярной системе координат. Требуется: 1. Построить линию по точкам, придавая φ значения от до через промежуток . 2. Найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью. 3. По уравнению в декартовой прямоугольной системе координат определить тип линии. Решение. 1) Совместим декартову и полярную системы координат и рассмотрим окружность произвольного, достаточно большого радиуса с центром в полюсе. Построим радиусы, образующие углы с полярной осью, где принимает значения от до с шагом . Вычислим косинусы этих углов и по этим значениям найдем . Результаты вычислений занесем в таблицу:
Построим точки () и по полученным точкам построим искомую линию:
2) Найдем уравнение данной линии в декартовой системе координат. Для этого воспользуемся формулами: . Отсюда , . Тогда имеем: или после упрощения . 3) Чтобы определить тип линии, определяемой полученным уравнением, преобразуем его к каноническому виду: или . Окончательно получим: , где ,. Таким образом, данное уравнение определяет параболу.
Дата добавления: 2014-10-15; Просмотров: 763; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |