Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Полярная система координат




Говорят, что на плоскости введена полярная система координат, если заданы:

1) некоторая точка 0, называемая полюсом;

2) некоторый луч, исходящий из точки 0 и называемый полярной осью.

Полярными координатами точки M называются два числа: полярный радиус и полярный угол - угол между полярной осью и вектором .

Пусть на плоскости введены декартова и полярная системы координат, причем начало декартовой системы совпадает с полюсом, а полярная ось - с положительной полуосью абсцисс. Тогда прямоугольные координаты x, y точки М и ее полярные координаты ρ, φ связаны следующими формулами:

,

,

Задание 4. Линия задана уравнением в полярной системе координат. Требуется:

1. Построить линию по точкам, придавая φ значения от до через промежуток .

2. Найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью.

3. По уравнению в декартовой прямоугольной системе координат определить тип линии.

Решение.

1) Совместим декартову и полярную системы координат и рассмотрим окружность произвольного, достаточно большого радиуса с центром в полюсе. Построим радиусы, образующие углы с полярной осью, где принимает значения от до с шагом . Вычислим косинусы этих углов и по этим значениям найдем . Результаты вычислений занесем в таблицу:

 

       
      0,92   0,7   0,38     -0,38   -0,7   -0,92   -1   -0,92   -0,7   -0,38     0,38   0,7   0,92  
    0,16   0,17   0,19   0,24   0,33   0,53   1,11   4,16   ∞   4,16   1,11   0,53   0,33   0,24   0,19   0,17   0,16

 

 

Построим точки () и по полученным точкам построим искомую линию:

 

2) Найдем уравнение данной линии в декартовой системе координат. Для этого воспользуемся формулами:

.

Отсюда , .

Тогда имеем:

или после упрощения

.

3) Чтобы определить тип линии, определяемой полученным уравнением,

преобразуем его к каноническому виду:

или

.

Окончательно получим:

,

где ,. Таким образом, данное уравнение определяет параболу.




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 763; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.