Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

КУРС ФИЗИКИ 18 страница




12.3. По медному проводу сечением 0,3 мм2 течет ток 0,3 А. Определить силу, действую­щую на отдельные свободные электроны со стороны электрического поля. Удельное сопротивление меди 17 нОм×м. [2,72×10–21 Н]

12.4. Сила тока в проводнике сопротивлением 10 Ом равномерно убывает от I 0=3 А до I =0 за 30 с. Определить выделившееся за это время в проводнике количество теплоты. [900 Дж].

12.5. Плотность электрического тока в алюминиевом проводе равна 5 А/см2. Определить удель­ную тепловую мощность тока, если удельное сопротивление алюминия 26 нОм×м. [66 Дж/(м3×с)]

12.6. Определить внутреннее сопротивление r источника тока, если во внешней цепи при силе тока I 1=5 А выделяется мощность P 1=10 Вт, а при силе тока I 2=8 А — мощность P 2=12 Вт. [0,17 Ом]

12.7. Три источника тока с э.д.с. E 1=1,8 В, E 2=1,4 В и E 3=1,1 В соединены накоротко одно­именными полюсами. Внутреннее сопротивление первого источника r 1=0,4 Ом, второ­го — r 2=0,6 Ом. Определить внутреннее сопротивление третьего источника, если через первый источник идет ток I 1=1,13 A. [0,2 Ом]

Глава 13 Электрические токи в металлах, вакууме и газах

§ 102. Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости метал­лов, созданной немецким физиком П. Друде (1863—1906) и разработанной впоследст­вии нидерландским физиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов — опыт Рикке * (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3,5×106 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны.

*К. Рикке (1845—1915) — немецкий физик.

 

Для доказательства этого предположения необходимо было определить знак и ве­личину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед,как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат российским физикам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опы­ты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881—1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах имеют отрицательный заряд, а их удельный заряд приблизительно одинаков для всех исследованных метал­лов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атом­ными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электро­ны, образуя своеобразный электронный газ, обладающий, согласно электронной те­ории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде—Лоренца, электроны обладают такой же энергией теплового движения,как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T =300 К равна 1,1×105 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Среднюю скорость á v ñ упорядоченного движения электронов мож­но оценить согласно формуле (96.1) для плотности тока: j = пe á v ñ. Выбрав допустимую плотность тока, например для медных проводов 107 А/м2, получим, что при концент­рации носителей тока n = 8×1028м–3 средняя скорость á v ñ упорядоченного движения электронов равна 7,8×10–4 м/с. Следовательно, á v ñ<<á u ñ, т. е. даже при очень боль­ших плотностях тока средняя скорость упорядоченного движения электронов, обуслов­ливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость á v ñ + á u ñ можно заменять скоростью теплового движения á u ñ.

Казалось бы, полученный результат противоречит факту практически мгновенной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоро­стью с (c =3×108м/с). Через время t = l / c (l — длина цепи) вдоль цепи установится стационарное электрическое поле и в ней начнется упорядоченное движение электро­нов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыканием.

§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов

1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью E =const. Co стороны поля заряд е испытывает действие силы F = eE и приобретает ускорение a=F/m=eE/m. Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

где á t ñ — среднее время между двумя последовательными соударениями электрона с ионами решетки.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с иона­ми решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядочен­ного движения становится равной нулю. Следовательно, средняя скорость направлен­ного движения электрона

(103.1)

Классическая теория металлов не учитывает распределения электронов по скоро­стям, поэтому среднее время á t ñ свободного пробега определяется средней длиной свободного пробега á l ñ и средней скоростью движения электронов относительно кристаллической решетки проводника, равной á u ñ + á v ñ (á u ñ — средняя скорость теп­лового движения электронов). В § 102 было показано, что á v ñ<<á u ñ, поэтому

Подставив значение á t ñ в формулу (103.1), получим

Плотность тока в металлическом проводнике, по (96.1),

откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получи­ли закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональ­ности между j и E есть не что иное, как удельная проводимость материала

(103.2)

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию

(103.3)

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.

За единицу времени электрон испытывает с узлами решетки в среднем á z ñ сто­лкновений:

(103.4)

Если n — концентрация электронов, то в единицу времени происходит п á z ñ столкнове­ний и решетке передается энергия

(103.5)

которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,

(103.6)

Величина w является удельной тепловой мощностью тока (см. § 99). Коэффициент пропорциональности между w и E 2 по (103.2) есть удельная проводимость g; следовате­льно, выражение (103.6)—закон Джоуля—Ленца в дифференциальной форме (ср. с (99.7)).

3. Закон ВидеманаФранца. Металлы обладаюткак большой электропровод­ностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы—свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического (теплового) движения, т. е. осуществляют перенос теплоты.

Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности (l) к удельной проводимости (g) для всех металлов при одной и той же температуре одинаково и увеличивается пропорциональ­но термодинамической температуре:

где b — постоянная, не зависящая от рода металла.

Элементарная классическая теория электропроводности металлов позволила найти значение b: b =3 (k/e) 2, где k— постоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил b =2 (k/e) 2, что привело к резкому расхождению теории с опытом.

Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опыт­ных данных. Рассмотрим некоторые из них.

Температурная зависимость сопротивления. Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональ­ная g, должна возрастать пропорционально (в (103.2) п и á l ñ от температуры не зависят, а á u ñ~ ). Этот вывод электронной теории противоречит опытным данным, согласно которым R ~ T (см. § 98).

Оценка средней длины свободного пробега электронов в металлах. Чтобы по фор­муле (103.2) получить g, совпадающие с опытными значениями, надо принимать á l ñ значительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде — Лоренца.

Теплоемкость металлов. Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Со­гласно закону Дюлонга и Пти (см. § 73), теплоемкость одноатомного кристалла равна 3 R. Учтем, что теплоемкость одноатомного электронного газа равна 3 / 2 R. Тогда атомная теплоемкость металлов должна быть близка к 4,5 R. Однако опыт доказывает, что она равна 3 R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классичес­кой электронной теорией.

Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной классической теории электропроводности метал­лов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, таккак во многих случаях (например, при малой концент­рации электронов проводимости и высокой температуре) она дает правильные качест­венные результаты и является по сравнению с квантовой теорией простой и нагляд­ной.

§ 104. Работа выхода электронов из металла

Как показывает опыт, свободные электроны при обычных температурах практически не покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препятствующее выходу электронов из металла в окружающий вакуум. Работа, которую нужно затратить для удаления электрона из металла в вакуум, называется работой выхода. Укажем две вероятные причины появле­ния работы выхода:

1. Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает избыточный положительный заряд и электрон притягивается к индуцированному им самим положительному заряду.

2. Отдельные электроны, покидая металл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убывает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям (10–10—10–9 м). Он не создает электрического поля во внешнем пространстве, но препятствует выходу свободных электронов из металла.

Таким образом, электрон при вылете из металла должен преодолеть задержива­ющее его электрическое поле двойного слоя. Разность потенциалов D j в этом слое, называемая поверхностным скачком потенциала, определяется работой выхода (А)электрона из металла:

где е — заряд электрона. Так как вне двойного слоя электрическое поле отсутствует, то потенциал среды равен нулю, а внутри металла потенциал положителен и равен D j. Потенциальная энергия свободного электрона внутри металла равна — е D j и является относительно вакуума отрицательной. Исходя из этого можно считать, что весь объем металла для электронов проводимости представляет потенциальную яму с плоским дном, глубина которой равна работе выхода А.

Работа выхода выражается в электрон-вольтах (эВ): 1 эВ равен работе, соверша­емой силами поля при перемещении элементарного электрического заряда (заряда, равного заряду электрона) при прохождении им разности потенциалов в 1 В. Так как заряд электрона равен 1,6×10–19 Кл, то 1 эВ= 1,6×10–19 Дж.

Работа выхода зависит от химической природы металлов и от чистоты их поверх­ности и колеблется в пределах нескольких электрон-вольт (например, у калия A = 2,2 эВ, у платины A =6,3 эВ). Подобрав определенным образом покрытие поверх­ности, можно значительно уменьшить работу выхода. Например, если нанести на поверхность вольфрама = 4,5 эВ) слой оксида щелочно-земельного металла (Са, Sr, Ва), то работа выхода снижается до 2 эВ.

§ 105. Эмиссионные явления и их применение

Если сообщить электронам в металлах энергию, необходимую для преодоления рабо­ты выхода, то часть электронов может покинуть металл, в результате чего наблюдает­ся явление испускания электронов, или электронной эмиссии. В зависимости от способа сообщения электронам энергии различают термоэлектронную, фотоэлектронную, вто­ричную электронную и автоэлектронную эмиссии.

1. Термоэлектронная эмиссия — это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энерги­ям) некоторые электроны обладают энергией, достаточной для преодоления потенци­ального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным.

Исследование закономерностей термоэлектронной эмиссии можно провести с по­мощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катод K и анод А. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накали­ваемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, как это показано на рис. 152, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи Б а, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны.

Если поддерживать температуру накаленного катода постоянной и снять зависи­мость анодного тока I а от анодного напряжения U а, — вольт-амперную характеристику (рис. 153), то оказывается, что она не является линейной, т. е. для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного тока I от анодного напряжения в области малых положительных значений U описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883—1923) и американским физиком И. Ленгмюром (1881—1957)):

где В— коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максималь­ного значения I нас, называемого током насыщения. Это означает, что почти все электро­ны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряжен­ности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода.

Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выве­денной теоретически на основе квантовой статистики:

где А — работа выхода электронов из катода, T — термодинамическая температура, С — постоянная, теоретически одинаковая доя всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Умень­шение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочно-земельного металла), работа выхода которых равна 1—1,5 эВ.

На рис. 153 представлены вольт-амперные характеристики для двух температур катода: Т 1 и T 2, причем Т 2 1. С повышением температуры катода испускание электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При U а=0 наблюдается анодный ток, т. е. некоторые электроны, эмиттируемые катодом, облада­ют энергией, достаточной для преодоления работы выхода и достижения анода без приложения электрического поля.

Явление термоэлектронной эмиссии используется в приборах, в которых необ­ходимо получить поток электронов в вакууме, например в электронных лампах, рентгеновских трубках, электронных микроскопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямления переменных токов, усиления электрических сигналов и переменных токов, генерирова­ния электромагнитных колебаний в т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.

2. Фотоэлектронная эмиссия — это эмиссия электронов из металла под действием света, а также коротковолнового электромагнитного излучения (например, рентгеновс­кого). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлектрического эффекта.

3. Вторичная электронная эмиссия — это испускание электронов поверхностью ме­таллов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных поверхностью (упруго и неупруго отраженные электроны), и «истинно» вторичных электронов — эле­ктронов, выбитых из металла, полупроводника или диэлектрика первичными электро­нами.

Отношение числа вторичных электронов n 2 к числу первичных n 1, вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии:

Коэффициент d зависит от природы материала поверхности, энергии бомбардирующих частиц и их угла падения на поверхность. У полупроводников и диэлектриков d боль­ше,чем у металлов. Это объясняется тем, что в металлах, где концентрация электронов проводимости велика, вторичные электроны, часто сталкиваясь с ними, теряют свою энергию и не могут выйти из металла. В полупроводниках и диэлектриках же из-за малой концентрации электронов проводимости столкновения вторичных электронов с ними происходят гораздо реже и вероятность выхода вторичных электронов из эмиттера возрастает в несколько раз.

Для примера на рис. 154 приведена качественная зависимость коэффициента вто­ричной электронной эмиссии d от энергии Е падающих электронов для КСl. С увеличе­нием энергии электронов d возрастает, так как первичные электроны все глубже проникают в кристаллическую решетку и, следовательно, выбивают больше вторичных электронов. Однако при некоторой энергии первичных электронов d начинает умень­шаться. Это связано с тем, что с увеличением глубины проникновения первичных электронов вторичным все труднее вырваться на поверхность. Значение d maxдля КCl достигает»12 (для чистых металлов оно не превышает 2).

Явление вторичной электронной эмиссии используется в фотоэлектронных умножителях (ФЭУ), применимых для усиления слабых электрических токов. ФЭУ представ­ляет собой вакуумную трубку с фотокатодом К и анодом А, между которыми расположено несколько электродов — эмиттеров (рис. 155). Электроны, вырванные из фотокатода под действием света, попадают на эмиттер Э1, пройда ускоряющую разность потенциалов между К и Э1. Из эмиттера Э1 выбивается d электронов. Усиленный таким образом электронный поток направляется на эмиттер Э2, и процесс умножения повторяется на всех последующих эмиттерах. Если ФЭУ содержит n эмит­теров, то на аноде А, называемом коллектором, получается усиленный в dn раз фотоэлектронный ток.

4. Автоэлектронная эмиссия — это эмиссия электронов с поверхности металлов под действием сильного внешнего электрического поля. Эти явления можно наблюдать в откачанной трубке, конфигурация электродов которой (катод — острие, анод — вну­тренняя поверхность трубки) позволяет при напряжениях примерно 103 В получать электрические поля напряженностью примерно 107 В/м. При постепенном повышении напряжения уже при напряженности поля у поверхности катода примерно 105 —106 В/м возникает слабый ток, обусловленный электронами, испускаемыми катодом. Сила этого тока увеличивается с повышением напряжения на трубке. Токи возникают при холодном катоде, поэтому описанное явление называется также холодной эмиссией. Объяснение механизма этого явления возможно лишь на основе квантовой теории.

§ 106. Ионизация газов. Несамостоятельный газовый разряд

Газы при не слишком высоких температурах и при давлениях, близких к атмосфер­ному, являются хорошими изоляторами. Если поместить в сухой атмосферный воздух заряженный электрометр с хорошей изоляцией, то его заряд долго остается неизмен­ным. Это объясняется тем, что газы при обычных условиях состоят из нейтральных атомов и молекул и не содержат свободных зарядов (электронов и ионов). Газ становится проводником электричества, когда некоторая часть его молекул ионизует­ся, т. е. произойдет расщепление нейтральных атомов и молекул на ионы и свободные электроны. Для этого газ надо подвергнуть действию какого-либо ионизатора (напри­мер, поднеся к заряженному электрометру пламя свечи, наблюдаем спад его заряда; здесь электропроводность газа вызвана нагреванием).

При ионизации газов, таким образом, под действием какого-либо ионизатора происходит вырывание из электронной оболочки атома или молекулы одного или нескольких электронов, что приводит к образованию свободных электронов и положи­тельных ионов. Электроны могут присоединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы. Следовательно, в ионизованном газе имеются положительные и отрицательные ионы и свободные электроны. Прохождение элект­рического тока через газы называется газовым разрядом.

Ионизация газов может происходить под действием различных ионизаторов: силь­ный нагрев (столкновения быстрых молекул становятся настолько сильными, что они разбиваются на ионы), короткое электромагнитное излучение (ультрафиолетовое, рен­тгеновское и g-излучения), корпускулярное излучение (потоки электронов, протонов, a-частиц) и т. д. Для того чтобы выбить из молекулы (атома) один электрон, необ­ходимо затратить определенную энергию, называемую энергией ионизации, значения которой для атомов различных веществ лежат в пределах 4¸25 эВ.

Одновременно с процессом ионизации газа всегда идет и обратный процесс — про­цесс рекомбинации: положительные и отрицательные ионы, положительные ионы и эле­ктроны, встречаясь, воссоединяются между собой с образованием нейтральных атомов и молекул. Чем больше ионов возникает под действием ионизатора, тем интенсивнее идет и процесс рекомбинации.




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 544; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.