КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
КУРС ФИЗИКИ 22 страница
Вихревые токи помимо торможения (как правило, нежелательного эффекта) вызывают нагревание проводников. Поэтому для уменьшения потерь на нагревание якоря генераторов и сердечники трансформаторов делают не сплошными, а изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, и устанавливают их так, чтобы вихревые токи были направлены поперек пластин. Джоулева теплота, выделяемая токами Фуко, используется в индукционных металлургических печах. Индукционная печь представляет собой тигель, помещаемый внутрь катушки, в которой пропускается ток высокой частоты. В металле возникают интенсивные вихревые токи, способные разогреть его до плавления. Такой способ позволяет плавить металлы в вакууме, в результате чего получаются сверхчистые материалы. Вихревые токи возникают и в проводах, по которым течет переменный ток. Направление этих токов можно определить по правилу Ленца. На рис. 182, а показано направление вихревых токов при возрастании первичного тока в проводнике, а на рис. 182, б — при его убывании. В обоих случаях направление вихревых токов таково, что они противодействуют изменению первичного тока внутри проводника и способствуют его изменению вблизи поверхности. Таким образом, вследствие возникновения вихревых токов быстропеременный ток оказывается распределенным по сечению провода неравномерно — он как бы вытесняется на поверхность проводника. Это явление получило название скин-эффекта (от англ. skin — кожа) или поверхностного эффекта. Так как токи высокой частоты практически текут в тонком поверхностном слое, то провода для них делаются полыми. Если сплошные проводники нагревать токами высокой частоты, то в результате скин-эффекта происходит нагревание только их поверхностного слоя. На этом основан метод поверхностной закалки металлов. Меняя частоту поля, он позволяет производить закалку на любой требуемой глубине. § 126. Индуктивность контура. Самоиндукция Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара — Лапласа (см. (110.2)), пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре: (126.1) где коэффициент пропорциональности L называется индуктивностью контура. При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией. Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток сквозь соленоид (потокосцепление) равен Подставив это выражение в формулу (126.1), получим (126.2) т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости m вещества, из которого изготовлен сердечник соленоида. Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды (см. § 93). Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э. д. с. самоиндукции Если контур не деформируется и магнитная проницаемость среды не изменяется (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и (126.3) где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со временем возрастает, то т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его возрастание. Если ток со временем убывает, то т. е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура. § 127. Токи при размыкании и замыкании цепи При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи. Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток (внутренним сопротивлением источника тока пренебрегаем). В момент времени t =0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется закономОма I = s/R, или (127.1) Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I 0 до I) и t (от 0 до t), находим ln (I / I 0) = –Rt/L, или (127.2) где t= L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что t есть время, в течение которого сила тока уменьшается в е раз. Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании. При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, или Введя новую переменную преобразуем это уравнение к виду где t — время релаксации. В момент замыкания (t =0) сила тока I = 0 и u = – . Следовательно, интегрируя по и (от – до IR– ) и t (от 0 до t), находим ln[(IR– )]/– = —t/t, или (127.3) где — установившийся ток (при t ®¥). Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I= 0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации t=L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление. Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t, получим Э.д.с. самоиндукции т. е. при значительном увеличении сопротивления цепи (R/R 0>>1), обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений. § 128. Взаимная индукция Рассмотрим два неподвижных контура (1 и 2), расположенных достаточно близко друг от друга (рис. 184). Если в контуре 1 течет ток I 1, то магнитный поток, создаваемый этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), пропорционален I 1. Обозначим через Ф21 ту часть потока, которая пронизывает контур 2. Тогда (128.1) где L 12 — коэффициент пропорциональности. Если ток I 1 изменяется, то в контуре 2 индуцируется э.д.с. , которая по закону Фарадея (см. (123.2)) равна и противоположна по знаку скорости изменения магнитного потока Ф21, созданного током в первом контуре и пронизывающего второй: Аналогично, при протекании в контуре 2 тока I 2 магнитный поток (его поле изображено на рис. 184 штриховыми линиями) пронизывает первый контур. Если Ф12 — часть этого потока, пронизывающего контур 1, то Если ток I 2 изменяется, то в контуре 1 индуцируется э.д.с. , которая равна и противоположна по знаку скорости изменения магнитного потока Ф12, созданного током во втором контуре и пронизывающего первый: Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L 21 и L 12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что L 21 и L 12 равны друг другу, т. е. (128.2) Коэффициенты L 12 и L 21 зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн). Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 185). Магнитная индукция поля, создаваемого первой катушкой с числом витков N 1, током I 1 и магнитной проницаемостью m сердечника, согласно (119.2), где l — длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмотку, содержащую N 2 витков,
Поток Y создается током I 1, поэтому, согласно (128.1), получаем (128.3) Если вычислить магнитный поток, создаваемый катушкой 2 сквозь катушку 1, то для L 12 получим выражение в соответствии с формулой (128.3). Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сердечник, § 129. Трансформаторы Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в практику русским электротехником П.Н. Яблочковым (1847—1894) и русским физиком И.Ф. Усагиным (1855—1919). Принципиальная схема трансформатора показана на рис. 186. Первичная и вторичная катушки (обмотки), имеющие соответственно N 1 и N 2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. , то в ней возникает переменный ток I 1, создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сердечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. взаимной индукции, а в первичной — э.д.с. самоиндукции. Ток I 1 первичной обмотки определяется согласно закону Ома: (129.1) где R 1 — сопротивление первичной обмотки. Падение напряжения I 1 R 1 на сопротивлении R 1 при быстропеременных полях мало2 по сравнению с каждой из двух э.д.с., поэтому (129.2) Э.д.с. взаимной индукции, возникающая во вторичной обмотке, (129.3) Сравнивая выражения (129.1) и (129.2), получим, что э.д.с., возникающая во вторичной обмотке, где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков N 2 /N 1, показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации. Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы: откуда, учитывая соотношение (129.3), найдем т. е. токи в обмотках обратно пропорциональны числу витков в этих обмотках. Если N 2 /N 1>1, тоимеем дело с повышающим трансформатором, увеличивающим переменную э.д.с. и понижающим ток (применяются, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если N 2 /N 1 < 1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, например, при электросварке, так как для нее требуется большой ток при низком напряжении). Мы рассматривали трансформаторы, имеющие только две обмотки. Однако трансформаторы, используемые в радиоустройствах, имеют 4—5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором. В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки. § 130. Энергия магнитного поля Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля. Рассмотрим контур индуктивностью L, по которому течет ток I. С данным контуром сцеплен магнитный поток (см. (126.1)) Ф =LI, причем при изменении тока на d I магнитный поток изменяется на dФ= L d I. Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу d А=I dФ =LI d I. Тогда работа по созданию магнитного потока Ф будет равна Следовательно, энергия магнитного поля, связанного с контуром, (130.1) Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля. Энергию магнитного поля можно представить как функцию величин, характеризующих это поле в окружающем пространстве. Для этого рассмотрим частный случай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим Так как I=Bl/ (m 0 mN) (см. (119.2)) и В=m 0 mH (см. (109.3)), то (130.2) где Sl = V — объем соленоида. Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью (130.3) Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднородных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т.е. оно относится только к пара- и диамагнетикам (см. § 132). 15.1. Кольцо из алюминиевого провода (r =26 нОм×м) помещено в магнитное поле перпендикулярно линиям магнитной индукции. Диаметр кольца 20 см, диаметр провода 1 мм. Определить скорость изменения магнитного поля, если сила тока в кольце 0,5 А. [0,33 Тл/с] 15.2. В однородном магнитном поле, индукция которого 0,5 Тл, равномерно с частотой 300 мин–1 вращается катушка, содержащая 200 витков, плотно прилегающих друг к другу. Площадь поперечного сечения катушки 100 см2. Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определить максимальную э.д.с., индуцируемую в катушке. [31,4 В] 15.3. Определить, сколько витков проволоки, вплотную прилегающих друг к другу, диаметром 0,3 мм с изоляцией ничтожно малой толщины надо намотать на картонный цилиндр диаметром 1 см, чтобы получить однослойную катушку с индуктивностью 1 мГн. [3040] 15.4. Определить, через сколько времени сила тока замыкания достигнет 0,98 предельного значения, если источник тока замыкают на катушку сопротивлением 10 Ом и индуктивностью 0,4 Гн. [0,16 с] 15.5. Два соленоида (индуктивность одного L 1=0,36 Гн, второго L 2 = 0,64 Гн) одинаковой длины и практически равного сечения вставлены один в другой. Определить взаимную индуктивность соленоидов. [0,48 Гн] 15.6. Автотрансформатор, понижающий напряжение с U 1=5,5 кВ до U 2 = 220 В, содержит в первичной обмотке N 1=1500 витков. Сопротивление вторичной обмотки R 2=2 Ом. Сопротивление внешней цепи (в сети пониженного напряжения) R =13 Ом. Пренебрегая сопротивлением первичной обмотки, определить число витков во вторичной обмотке трансформатора. [68] Глава 16 Магнитные свойства вещества § 131. Магнитные моменты электронов и атомов Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процессами, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Для того чтобы разобраться в магнитных свойствах сред и их влиянии на магнитную индукцию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества. Опыт показывает, что все вещества, помещенные в магнитное поле, намагничиваются. Рассмотрим причину этого явления с точки зрения строения атомов и молекул, положив в основу гипотезу Ампера (см. § 109), согласно которой в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах. Для качественного объяснения магнитных явлений с достаточным приближением можно считать, что электрон движется в атоме по круговым орбитам. Электрон, движущийся по одной из таких орбит, эквивалентен круговому току, поэтому он обладает орбитальным магнитным моментом (см. (109.2)) p m= IS n, модуль которого (131.1) где I=en — сила тока, n — частота вращения электрона по орбите, S — площадь орбиты. Если электрон движется по часовой стрелке (рис. 187), то ток направлен против часовой стрелки и вектор р m (в соответствии с правилом правого винта) направлен перпендикулярно плоскости орбиты электрона, как указано на рисунке. С другой стороны, движущийся по орбите электрон обладает механическим моментом импульса L e, модуль которого, согласно (19.1), (131.2) где v = 2 pn, pr 2 = S. Вектор L e (его направление также определяется по правилу правого винта) называется орбитальным механическим моментом электрона. Из рис. 187 следует, что направления р m и L e, противоположны, поэтому, учитывая выражения (131.1) и (131.2), получим (131.3) где величина (131.4) называется гиромагнитным отношением орбитальных моментов (общепринято писать со знаком «–», указывающим на то, что направления моментов противоположны). Это отношение, определяемое универсальными постоянными, одинаково для любой орбиты, хотя для разных орбит значения v и r различны. Формула (131.4) выведена для круговой орбиты, но она справедлива и для эллиптических орбит. Экспериментальное определение гиромагнитного отношения проведено в опытах Эйнштейна и де Гааза* (1915), которые наблюдали поворот свободно подвешенного на тончайшей кварцевой нити железного стержня при его намагничении во внешнем магнитном поле (по обмотке соленоида пропускался переменный ток с частотой, равной частоте крутильных колебаний стержня). При исследовании вынужденных крутильных колебаний стержня определялось гиромагнитное отношение, которое оказалось равным – (e/m). Таким образом, знак носителей, обусловливающих молекулярные токи, совпадал со знаком заряда электрона, а гиромагнитное отношение оказалось в два раза бо2льшим, чем введенная ранее величина g (см. (131.4)). Для объяснения этого результата, имевшего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орбитальных моментов (см. (131.1) и (131.2)) электрон обладает собственным механическим моментом импульса L es, называемым спином. Считалось, что спин обусловлен вращением электрона вокруг своей оси, что привело к целому ряду противоречий. В настоящее время установлено, что спин является неотъемлемым свойством электрона, подобно его заряду и массе. Спину электрона L es, соответствует собственный (сотовый) магнитный момент р ms, пропорциональный L es и направленный в противоположную сторону: (131.5) *В. И. де Гааз (1878—1960) — нидерландский физик.
Величина gs называется гиромагнитным отношением спиновых моментов. Проекция собственного магнитного момента на направление вектора В может принимать только одно из следующих двух значений: где ħ=h/ (2p) (h— постоянная Планка), m b— магнетон Бора, являющийся единицей магнитного момента электрона. В общем случае магнитный момент электрона складывается из орбитального и спинового магнитных моментов. Магнитный момент атома, следовательно, складывается из магнитных моментов входящих в его состав электронов и магнитного момента ядра (обусловлен магнитными моментами входящих в ядро протонов и нейтронов). Однако магнитные моменты ядер в тысячи раз меньше магнитных моментов электронов, поэтому ими пренебрегают. Таким образом, общий магнитный момент атома (молекулы) p a равен векторной сумме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов:
Дата добавления: 2014-11-25; Просмотров: 396; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |